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Statistics of loop formation along double helix DNAs
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We compute relative position distributions of distant sites along discretized semiflexible polymers, focusing
on encounter statistics for pairs of sites along a double-stranded DNA mol@sidA), using a transfer-
matrix approach. We generalize the usual semiflexible polymer, considering nonlinear elasticity effects arising
from inhomogeneities which either appear at any position via thermal fluctuation, or which occur at specific
“quenched” locations. We apply our theory to two problems associated with dsDNA looping. First, we discuss
how local flexible defects in double-helix structure facilitate cyclization of short dsSDNA molecules. Flexible
defects greatly enhance cyclization rate, and strongly modify its dependence on the closure orientational
boundary condition. This effect is relevant to free-solution cyclization experiments, and to loop forination
vivo. Second, we present calculations of force dependence of the probability of formation of loops along single
dsDNAs which show how the probability of loop formation is suppressed by tension.
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I. INTRODUCTION Two examples of DNA-looping proteins being studied us-

The long double-stranded DNAdSDNA) molecules in ing single-molecule approaches are the LacR and GalR tran-

the chromosomes of living cells exist in an intermediate stat§criPtional repressors, which bind to specific DNA se-
icgduences, and which can link two binding sites along a single

Chromosomal DNAs—often centimeters in length—are Spag’jsDNA. Finzi and Gelles observed formation and dissolution

tially ordered in the cel[1]. Some of this order is due to °f LacR-mediated-loops along single dsDNA molecules in a
protein-mediated associations of distant loci along chromo€!assic study{17]. More recent micromanipulation experi-
somal DNAs, as occurs during, e.g., gene regulafdg, ments[18] on GaIR studleq the role of DNA §uper00|l|ng
site-specific DNA “cut-and-paste” recombinatig], and and the DNA-bending protein HU on the formation of a loop

general recombinatiof5]. These chromosomal events re- between two GalR binding sites.

Uire formation ofcrosslinksor svnanseof dsSDNA mol- Another recent single-molecule experiment used the re-
q ynap striction enzyme BspMI, which binds to two copies of its

ecules, gene'rally mediated by proteins which bind the IOOF§pecific recognition site 'SACCTGC, and therefore can
boundariesFig. 1). , form a loop between two sites along a single dsDNA.

It association of two sites along the same dsDNA mol-| 445 gpening events were observed when a BspMi-looped
ecule occurs, a dsDNA loop is formed, with the possibility \_.pNA was put under large tension. Finally, we note that
that the intervening dsDNA is free to fluctuate therma“y. A|oop formation a|0ng Sing'e-stranded nuc'eic a@dNA)
number of experiments suggest that at submicron scales, thfas also been studied, where the loops are stabilized by
dynamics of dsDNA in cells is dependent on conformationalsequence-defined base-pairing interactif2@21], thus not
diffusion [6]. Formation of loops along a dsDNA via colli- requiring protein. In those ssNA experiments, the kinetics of
sions of sites brought together by conformational diffusion isloop opening and closure as a function of applied tension
an important mechanism behind “higher-order” organizationcould be rather precisely characterized. These studies show
of dsDNA in vivo[7,8], and can be described using polymer that loop closing and opening along individual biomolecules
statistical mechanick9]. can be gquantitatively studied using micromanipulation ex-

Looping dynamics of dsDNAs in the cell involve a wide periments.
range of proteins, for example DNA-bending proteins which  Another motivation for theoretical study of loop forma-
facilitate dsDNA loops and other “higher-order” nucleopro- tion comes from studies of circularizatigftyclization”) of
tein structures[10-17. Statistical-mechanical models for linear dsDNAs. Cyclization rate measurements have long
higher-order DNA organizatiorin vivo, while valuable, been used to study bending of dsDNI22]. This approach
therefore tend toward the qualitative, since there are so marlyecame widely used to study dsDNA flexibilif23], and is
unknowns. However, precise quantitative experimental studyow being used as a tool to study spontaneously bent dsDNA
of the proteins which mediate higher-order organization of 24,25, and chemical factors which affect DNA conforma-
double helix DNA is commonplace in biochemistry labora-tion, such as DNA-bending protein26].
tories. For example, recent single-molecule micromanipula- A recent study by Cloutier and Widorf27] examined
tion studies have revealed many new aspects of the mechashorter dsDNA molecules than usually studied, with the re-
ics and even basic biochemistry of DNA-bending proteinssult that anomalously large cyclization probabilities were ob-
[13-16. These precise biophysical characterizations of interserved, relative to those expected theoretically from the
actions of purified proteins with DNA motivate theoretical simple semiflexible polymer mod¢R8-30. Those experi-
study of DNA organization by proteins, and are first stepsments suggest that very tight dsDNA bends may occur more
toward building models oin vivo chromosome dynamics.  frequently than expected from the semiflexible polymer
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the action of drugs or proteins which induce “permangat”
“spontaneous’ bends[33], or thermally-excited regions of
‘ modified flexibility [31]. Our calculations also allow us to
@) ® r— () introduce inhomogeneities in shape or flexibility at fixed po-
sitions along a polymer chain, describing, e.g., sequence
variation of bending elasticity, or effects of proteins bound at
specific sequence sites.
Section Il introduces our calculation method. We compute
(b) . . the statistical distribution of the end-to-end vector, using
» ' transfer matrices analytically expressed in a basis of spheri-
cal harmonics. For zero force, we obtain analytical results for
the tangent vector correlation function, and therefore the per-
sistence length and mean squared end-to-end vector.

We then discuss two applications to specific experimental
situations. Section Il uses our theory to compute dsDNA
cyclization probabilities(in the DNA cyclization literature,
the “J factor”) in the presence of thermally excited flexible

. . defects. These spontaneously excited localized flexible de-
fects may provide an explanation of the anomalously large
short-dsDNA cyclization rates observed by Cloutier and Wi-

. dom[27], or alternately are a model for proteins which fa-
®

1

(c)

(d) ‘ cilitate double-helix bending by increasing its flexibility at

points where they bind. We show how these defects can sta-
tistically dominate the cyclized states, and we show how
changes in the cyclization boundary conditions drastically
‘ affect theJ factor for short dsDNA segments.
If localized flexible defects are present, then for roughly
100 base-pairbp) segments cyclized with a parallel-end
boundary conditioriFig. 1(c)] two localized, hairpinlike de-
' fects dominate the cyclized states, essentially eliminating the
. need for any other bendiridrig. 1(d)]. We also show that if
‘ the synapsis boundary condition is changed tofiee or
antiparallel only one localized defect is necessary, enhancing
FIG. 1. dsDNA synapsis and loop formatiof@ Synapsis be- the cyclization probability for very short dsDNA segments.
tween two dsDNA segmenfgray curvey mediated by protein- For the antiparallel boundary conditions, the prominent peak
DNA complexes(black circles. (b) Loop formation mediated by jn cyclization probability for dsDNA lengths near 500 bp
proteins bound at t\./v.o specifip positions along a dsDNA moleculegeen in the classical harmonic-bending-energy thg2eyis
the boundary condition in this sketch has=90° synapsis angle entjrely absent, with instead a monotonic increase in cycliza-
between the mteract_lng sitegc) Cyclization of_a linear d_sDNA tion probability occuring as one goes to progressively shorter
molecule, by the action of the enzyme DNA ligadiiack circle, 1 q1acyar lengths. This result has strong implicationsiffior
which is thought to require a “parallel-end” boundary conditi@). vivo dsDNA bending, where dsDNA loops or folds on short

Role of localized sharp bends in facilitating dsDNA looping for length scales are indeed often seen to occur over very short
parallel-end and antiparallel-end boundary condition. .
sequence distances.

model. These experiments have triggered theoretical study of We also compute the effect of permanent bends on ds-
how nonlinear elasticity of the double helix can generate thédNA cyclization probability. Such permanent bends can be
experimental results, with particular attention on the possicreated by DNA-bending proteins that bind to specific se-
bility that localized, flexible defects in double helix structure quences.
may play an important role in loop formation along short The second main application of our theory, to loop forma-
dsDNAs[31,32. tion in dsDNA molecules under tension, is discussed in Sec.
In this paper, we study DNA loop formation theoretically. IV. We compute the end-to-end vector distribution of a ds-
We calculate distribution functions for the difference in po- DNA segment under force. The longitudinal and transverse
sition of any two points along a discretized polymer, underdistributions are nearly Gaussian for logany kilobasg
zero or nonzero tension. Our transfer matrix approach isnolecules. Non-Gaussian corrections become measurable for
similar to that used in our previous paper studying DNA-molecules in the kilobase range, the size often studied in
bending proteing33]. It describes the positional statistics for single-molecule experiments on DNA transcript{@4]. Our
a broad class of polymer models including the discretizednain result is a computation showing how the probability of
semiflexible polymer and variants on it with nonlinear elas-dsDNA loops of roughly kilobasékb) size is suppressed by
ticity. One type of nonlinear elasticity originates from ther- applied force. This effect should be directly measurable in
mally fluctuating localized defects, which might arise from experiments on site-specific loop-forming proteins.

q
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[l. TRANSFER-MATRIX CALCULATION OF END-TO-END polymer subject to the constraint imposed by the delta func-
DISTRIBUTIONS tion. The denominator provides normalization, and is just the

total partition function for the linear chain with no constraint

We now compute the end-to-end vector distribution, usin . ; . . .
a transfer matrix approach. We begin with the usual sem%pp“ed' Thus(3) is the normalized probability density for

flexible polymer (Sec. Il A), including various boundar the end-to-end vector of the chain.

'€ poly ' ' 9 . y The expectation valug3) may be written using a
conditions (Sec. Il B, for free, unstretched chainSec. 5 2 bk iaal-1")22. b2
Il C), and and chains subjected to applied ten¢®ec. 1D, K-dependent transfer matrik (t, 1) =e”*'e e as
We then generalize our model to include effects of localized

“defects,” e.g., flexible joints and spontaneous be(fisc. fdzf a2 ETR !
. . 3 1M NS Tk
Il E). These localized defects are special cases of general, (R) = d°k kR 4)
nonlinear elasticity; the general case is not difficult to ana- p (2m)?® o on N1 '
lyze (Sec. Il E 3. For zero applied force, the orientational fd 1N T

correlation functions of all these models are of the simple
exponential form of the simple semiflexible polymé@ec.  where the operation of matrix multiplication is taken to in-
Il E 4), characterized by a single “persistence length. dicate integration over tangent vectofs Denoting Z,

— ({2 A% #TN-1 — [42F 428 TN-1
A. End-to-end vector distribution of discretized =Jd%d Tk andZ=[d,d inTo (4) becomes

semiflexible polymer Z(R)

The energy of a continuum semiflexible polymer of con- p(R) = 7 (5)
tour lengthL including the effect of an applied external force
in the Z direction,f=fZ, is where Z(R)=[d%e*Rz,/(2m)% is the partition function
L o\ 2 subject to the constraint of end-to-end distanceRofind
ﬁE:f ds[é(ﬁ) -5 _f} (1) boundary conditiorg, and where is the total partition func-
0 2\ds ’ tion without any constraint.
] ) ) The matrixT, can be computed in the basis of spherical
where the polymer is described as a space cwethe arc  parmonics as
length parametrizing the curve, ahds the unit tangent vec-
tor describing the curve conformatioA. is the persistence . o D e 5 7 N
length, characterizing the bending rigidity of the polymer. {(IMT/I'm >:f A" Y () Tie(8,17) Yy (1)
For f=0, over contour distanc& the tangent vector orienta-

tion becomes decorrelated. We consider the discretization of = (4m)32(-= )™ ™ D ils(21, + 1)(2l,+ 1)
this model, PRPY

w[a x\(2+ D2 + (2 +1)(I 2 )

BE=2 E(ti+1_ti)2_bf2 4| 2 v 3 mO0 -m
i=1
. - o Lol I\ s I

where thet; are tangent vectors describing orientations of the X 00 ol\emy m-
successive segments of lendthThe forcef is in kgT units mm-=mm
(dimensions 1/lengdh In the continuum limitb—0, the A P R , ,
bending elastic constants of the continuum and discrete mod- 00 0 e (a)iy,(bf)j (bk)

els are related ba=A/b. A

The probability densityp(R) for the end—to—endA distance XYI3,m’—m(k)v (6)
R of this polymer is given by the average &ft;,ty)6°(R
_szN:-lfj) over all the chain conformations, wheteis a  Using spherical harmonic expansions for the exponential
function that imposes a specific boundary condition. Decomfunctions inT,, and expressing all integrals of spherical har-
posing the three-dimensional delta function into wave num{monics in terms of WignerBsymbols[35]. Here j; andi,

functions of the first kind, respectively.

(R) = d’k The transfer matrix fork=0, T,, used to compute the
PR = (2m)?® partition function in the denominator, has a simpler form:
N-1
Loy = A 1\M ol 2 o = 1)
fdftl---dZTNéexn—BEku-ij] (Im|Toll’m’y = 4ar(- 1) 5mm|22 (2, + V(2 + 127 +1)
w@ikR i=1
' P I L A PR N L U
Jdel...deNe—ﬁE X 00 0/\om-m ey (@i (bf).
() (7

The numerator counts the number of configurations of théVhen the forcef is zero,(6) is simplified:
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AM[T |1’ M’y = dar(= D)8y > 1'2(20, + 1)V(21 + 1)(21" + 1) antiparallel: >, (- 1)(Im|Th"YIm)
Iy Im
L | |'>(|2 I ) s
X e, (a)j (bk). * .
(0 0 0/\0 m -m 1 (@i,(0k fixed relative angle: (2m)™1>, dq €'9%,(q)4mi'
(8) m

. o X{(m[TNIm).
For =0, {Im|Ty|l’'m’)=4m€e 3 (a) &+ S ; the total partition (Im[Tic”{im)

function isZ=[4me 3y (a)]N"1 .

For our calculations, the matrix multiplications and the
integral overk are done numerically. Cutoffs of matrix di-
mension andk must be chosen large enough that the calcu- For applications to “free” molecules in solution, e.g.,
lations are convergent. It is straightforward to incorporateequilibrium cyclization(Sec. Ill), the external tensioff is
quenched disorder into the calculations, by multiplying a sezero. In this caseZ, is isotropic, depending only ofk|.
ries of matrices that represents the sequence of disorder. Expandinge®R in spherical coordinates, the end-to-end

The same approach can be used to calculate the end-teector distribution becomes
end distribution of an arbitrary segment inside a long poly-
mer 'by. co.nsiderir)g"l’z"l in (4) to be a site—dependent matrix p(R) = (277)‘32‘1J &k ek Rz,
multiplication. This is done by setting tHeof j|3(bk) in (6)
to zero when outside the segment of interest.

C. End-to-end distribution for zero applied force

=4n(2m) 327> (- MM
I,m
B. Orientational boundary conditions

We will compute Z(R) with a few different types of Xf dk kzh(kR)ZkJdzle*,m(k)Yl,m(R)
boundary conditions imposed on the ends. Different bound- 0
ary conditions provide models for different types of bio- * ]
chemical reactions that stabilize dsDNA loops. Generally, :477(277)_3Z_lj dk Kjo(kR)Z, (10
dsDNA loops mediated by a certain protein or protein com- 0
plex might require the two ends to meet at a certain angle. IThis distribution is isotropic, and is a function of the radial
this type of situation we wish to compui, subject to a coordinate only:
constraint functioné which counts only end meetings with 01 [
certain orientations. _el 2.

A simple example discussed in Sec. Il is cyclization of p(R)= WZfo dk RREjo(kKR Zi. 1D
dsDNA by the enzyme T4 DNA ligase, which requires the
two ends to meet one another aligned end-tof2@. We  These distributions will be used in Sec. 11l to compute equi-
will refer to this asparallel boundary condition, correspond- librium cyclization probabilities for free chains.
ing to the choicet=8%(t,,ty) in (3) and(4).

For other enzymes, the two ends might be required to
meet in antiparallel alignment, so as to form a “hairpin”
structure. This boundary condition is expressed &y In the case that is nonzero,Z, is axisymmetric around
=4t -ty). More generally, we might have the requirementthe forcez) direction. The integral over the azimuthal angle
that the two ends meet atfixed relative angler, requiring  Of k can be done, leaving integrals over the magnitude and

D. End-to-end distribution for polymer under force

=61, ty-a). polar angle:

These boundary conditions are handled by conversion of .
the constraint functio to a matrix acting on the end orien- p(R) = (277)‘32‘1f d*k e'kRz,
tations:

— -3 -1 _ I+m; | - H
2=3 S | Pt limdm T mg =(@m Mz 2 (1) 'fo dkc €5 (kR

I, Inamy
X (It (9) X f &k Z, Y] (K)Y) m(R)

The k-dependent partition functiof, reduces to the follow-

ing for the cases listed above: = (277)_22_1; (- D'i'(2 + DP(xR)

. N-1, o
parallel: %(Imﬁk |Im) Xf dkk2j|(kR)fdka|(xk)Zk, (12
0

free:  4m(00| T} Y00) where x,=cogz-k). This distribution is a function of the
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magnitude ofR, and its angle relative to theaxis as speci- stacking interactions. By comparison, the covalently bonded
fied byxREcog(z.F})_ sugar—phosphate packbones are completely flexible, pharac—
In single-molecule magnetic tweezer micromanipulationtérized by a persistence length of about 0.7 [87. This
of DNA experimentg36], the fluctuations of the end-to-end SU9ggests a mechanism for generation of localized regions of
vector under constant-force conditions may be directly ob€xtreme flexibility along the double helix: local disruption of
served, and thus the complete end-to-end distribution med2@Se interactions may give rise to regions where the double
sured. Thus, the full vector distributi¢i2) can be measured Nelix can be bent easily. Such disruptions might occur by
experimentally. However, the one-dimensional distributiondhermal fluctuations which open bases in a localized region
of componentsof the end-to-end vector are usually mea- of the double hellx[31], action of proteins which locally
sured, i.e., end-to-end vector componelusgitudinal and disrupt double helix structure so as to generate local

transverseto the force direction. The moments of these two hinged” regions[33], and chemical modification of double
one-dimensional distributions are related; one of these reld1€lix DNA which permanently disrupts base pairing in a lo-

tions is widely used to measufealibrate forces in magnetic calized region, for example by removal of one or a few bases
tweezer experimentsAppendix) [36]. along one strand, or by removal of part of one strand alto-
The distribution of the projection of the end-to-end vec- 9ether.

tor alona anv direction described by unit vecfm(the dis- We focus in this section on “annealed” hinge defects, with
g any y the simplification that each site along the molecule has an

tribution of the one-dimensional variable=R-\) is (12): equal defect-formation probability. Such defects are models
A for the first two situations listed above, with the condition in
p()\):f d*Rp(R)S(N-R - \) the protein case that binding-unbinding equilibrium occurs
(this may be less common than generally assumed,1€8e

% . . We suppose that this type of defect changes the bending
= (ZWZ)_lf dq e"q“f d*k Z,8*(k — g\) stiffness of our chain at one of its vertices frento a’. The
- energy of the molecule with these hinge excitations possible

N o at each of its vertices is
=(2m2)" f dq € Z=gx- (13 _
e K o | (Gpoat+dnad) 5 AN
. . . BE=2 | — {17+ oy -bffi - 2,
The projected distribution requires onfy, evaluated along i=1 2 '
the wave number axik=qgA. (14)

where then; are two-state variables, indicating whether seg-
E. Localized hinge and kink defects in thermal equilibrium menti is either in double helix form(n,=0) or contains a

The above calculations have been applied to the simpl8inge defectn;=1). The defect creation energy controls
semiflexible polymer, each segment of which was consideref'® Probability that a defect appears at any particular loca-
to have the same flexibility and geometrical properties. How 0N, and represents either the free energy cost of generating
ever, virtually the same calculations can be applied to mor& local defec{31], or for applications to protein-generated
complex and inhomogeneous situations, such as localizeyn9es, the binding free enerd$3,44. Note u here has
defects in double helix structure which impart local change®PPOSite sign tqu of [33,44. ,
in dsDNA flexibility. Such local defects might be transiently  Including the effect of these hingeg3) should be re-
thermally activated(“annealed), or alternately located at Placed with
specific, fixed positiong‘quenched). In either case, includ-

N
ing such defects amounts to replacement of the simple trans- d% - dAyeeP ol Y e fF

fer matricesT, discussed above. In this subsection we de- o(R) :f d*k e ikR Ny -1
scribe transfer matrices which generate highly flexible (2m)?® o o .
“hinge” sites, and local spontaneous bends characterized by Jd fodiy X ef
preferred bend angles. M1 nIN-1

By summing out the defect variables, these models also (15

can be considered to describe strongly nonlinear bendin
elasticity. Despite the complication of nonlinear bending
elasti_city, at zero fo_rce, the orienta;ional correlations in these T.&1) = eibk-f[e—a<f -2 g —f’)Z/Z—M]ebfi-f, (16)
theories retain a simple exponential decay, allowing one to

After summing ovekn;}, the transfer matrix becomes

define a zero-force persistence length. or in spherical harmonic representation
1. Thermally excited flexible “hinges” (m|T l'm’) = f d% 'Y, (O T EE) Y (@)
Double-helix DNA is considered to be a stiff polymer, oo - "
with a persistence length of about 50 nm under physiological =(4m)¥4-1) > 2+
conditions[23,43. This stiffness is a result of double helix lul2l3
structure, which is made robust by base-pairing and base- X (2, + V(2 + D)2 + 1)(215+ 1)

061905-5



YAN, KAWAMURA, AND MARKO
[ 1 [ [ 1, |
X( 2 I )( 2 1)
m O -m/\0 O O
|’ [ | 1" 15 |
X( 3 1)< 3 1)
-m" m-m m/\0 O O
X[, (a) + e i (a’)]

X1y, (OD]1,(BRY (k). (17)

2. Spontaneous bends (“kinks”)

Many proteins which bind to the DNA double helix gen-
erate local bends, with-90° deflections generated over just
a few base pairs. The net flexibility of the protein-DNA com-
plex can be modified as well; for example, the DNA-bending
proteins HMGB1 and NHP6A generate severe bends, but
which appear to be more flexible than the bare double helix
[16]. Here we discuss the appearance of such “kinks” in
thermal equilibrium, which in the context of the proteins
means equilibration of binding and unbinding processes. We
consider for the moment nonspecific binding where each
DNA site is equally likely to be bound by protein. The cal-

PHYSICAL REVIEW E 71, 061905(2005

P T P
@,y =i el f dq j(qe @2 -ar, (21)

the spherical harmonic representationTft,t’) becomes

(M| T Jl'm"y = f d% 'Y, (DT E) Y (@)

= (4m)¥A(- 1™ ™ > ils(2l,

11,0013

+D)(2L+ V2 +1n2+1)(25+1)
X(I L, 1y )<| I, |1>
m O -m/\0 0 O

X( I’ I3 |1>(|' 5 |1>
-m m-m m/\0 0 O

X [e_ai|r(a.) + e_'uﬂl ’(a, ’ ’)’)]

X1y, (0D)]i (0K Vi, y-(). (22

culations of this section include analytical expressions for 3. Nonlinear bending elasticity in annealed-defect models

transfer matrices of the models introduced 33].
The energy including thermally equilibrated kinks is

N-1 ’
Onod ., Onad
BE=2 l 5 (fea -T2+ 5 (Ei -fia— 9+ moya
i=1
- bff; -21 : (18

wherea’ is the bending modulus of the kink, andis the
cosine of the preferreowest-energykink angle[33].

Above, we have considered thermally fluctuatiffgn-
nealed) local defects, using excitations which change
double helix elasticity, or introduce “kinks” of preferred
angle. These models are still homogeneous, since every site
is described by the same transfer matrix. Furthermore, since
we have not introduced any couplirftcooperativity”) be-
tween adjacent defect variables we proceeded above by
summing over thenbeforecarrying out the matrix multipli-
cations. Our calculations are easily seen to be equivalent to
homogeneous semiflexible polymers with nonharmonic
bending elasticity.

Similar to the case of fluctuating hinges, the transfer ma- For example, for the “hinge” defects of Sec. Il E 1, the net

trix for (18) is

Tk(f,f’) = E‘ibk'f[e‘f?‘(f -2 g @2 1 - y)z—ﬂ]ebfi-f_

(19

The functione™@"2® ¥ -%* can be decomposed:
e @21 -2 =J dr ot -t - Pe@/2(r- 7)?

:iqu éqf-f’fdTe(-a’/Z)(f-y)z-iCIT
2
=472 1Y Y1)
I,m
l ” 2 ’_;
X dai —q-/2a’-iqy )
(V%a'f_w q ji(ae )
(20

If we define

bending energy of one of the segment-segment jointd &f
is

BENET) = - In[e @217 4 grugr@ 2177
= g(f — )2 In[1 + e rel@a 2 -7
(23

Consider the casa>a’ and x>0, describing rare, flexible
hinge defects; then, for sufficiently small bends the linear
elastic energy(a/2)(t-1’)? dominates. However, for larger
bends, the term(a’/2)(t-1")?, characterized by a smaller
bending rigidity(a’ <a) takes over. The crossover from the
small-bend to tight-bend behavior occurs wh@r")?/2
=1-t-i'=pul/(a—a’). Thus the fluctuating-hinge calculation
can also be thought of as describing a homogeneous semi-
flexible polymer with strongly nonlinear bending elasticity.
The general case is where the segment-segment joint
bending energy is described by a functig-t’), which can
be expanded in Legendre polynomials:
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o 20+1 . @ is therefore just the log of that ratio:
et =g(f-1) =2 = ~CP(E-T) J ’
|

e _ [ o + e ig(@)
) 2”% CY i) Yim(®), (24) v 'n( e?iy(a) + e-u-a’il(a')) ’ 20

where the expansion coefficients &= 1,P/(x)g(x)dx. The  for fluctuating flexible hinges. 1i27) the persistence length

generalization of the transfer matrig) is is a simple, positive real number, as for the simple semiflex-
ible polymer.
(Am[T|l'm’) =J d% dzf/yl* OTE)Y @) For the fluctuating kinKspontaneous bepdase the per-
m sistence length takes the form
1 ,
= 5(477)3’2(— DM ils(2l + 1)(20,+ 1) o= In( e ig(a) + e‘“no(a’,7)> 28
wi2ls T \eiya) + e,y

] p L1, Iy
XN+ D)@+ 1)(25+ D(m 0 —m) where (a’, y) is as defined by21). The situation is more

, complicated in this case: the persistence length is a function
(I I2 Il)( ! I3 Il) of both the polymer intrinsic persistence lengthand the
kink parameters anda’. The interior of the log is no longer
U 1a | . constrained to be positive: for sharp and frequent bends, the
><< 3 1)C,J, (bDj.BKY,. py-m(K). adjacent-neighbor tangent correlatifthe argument of the
000 2 ¥ logarithm in(28)] can become negativsee below: In this
(25)  case, the tangent correlations are “antiferromagnetic” and the
correlations “ring down” with oscillating sign. The persis-
tence length can still be defined, but it will have an imagi-
nary partari.

) o The general case for bending elasticity described by a
The low-force elastic response of the usual semiflexiblgction gt-t") asin(24) is

polymer is characterized by its persistence length, defined to
be the tangent-tangent correlation length measured along the

00 O/\-mM mM-m m

4. Zero-force orientational correlations and persistence
length

1
chain. In the discrete models with annealed local defects dis- f Po(X)g(x)dx
cussed above, thé=0 tangent vector correlation function -1
has exactly the same form as in the simple semiflexible poly- o=l 40— |. (29
mer, i.e.(f;-fi.;)=€7®, where® depends on the parameters f P1(X)g(x)dx
describing the defects. Thus a persistence length for the -1

annealed-hinge and kink models can be defined Ada
=b/®, whereb is the segment length. . .
To see this, use the transfer matridés for the casef F. Permanent bends at fixed locations

=0 andk=0 to compute the expectation value of two tangent  apove, we have considered spontaneous bends generated
vectors separated hysegments, in thermal equilibrium, for example by binding or unbinding
_ _ of DNA-bending proteins. However, it is possible that an
fdzfodzfj(fo-fj)<fo|T{,|fj> fdzfo(fo-i)<f0|TJO|2> irreversibly-bound proteifil6] (or a chemical defect in the
- double helix might generate a bend at some specific se-

(o) o o8 2 T % 2 Tila ' guence position. This situation can be handled by making the

fd tod tJ'<t0|T0|tJ'> J dto(tol Tol2) transfer matrix segment depend¢88]. Here, this amounts
(26) to replacingTy * (and Ty™Y) in (4) by the multiplication

15T, ., whereT, . is the site dependent matrix.

The dot product in the numerator ¢26) is proportional to We illustrate this using the example of a permanent kink

Y1o(to), selecting ther;4(t,) component off,. The integral in ~ at a.sitelq in a chain which is an othe_rwige homogeneous

the denominator selects thé(t,) component ofT,. For ~ Semiflexible polymer. The energy function is

zero force and wave number, the annealed-defect transfer

matrices (17) and (19) are diagonal (proportional to iy (1-é8g9a . c2, Gg@ o oo 2

81 6mm ), SiNce in the absence of the vectbrandk, Ty(t,t) PE= 21 Gl 5 (G T =)

is a function oft -t’. The matrix product reduces to a product -

of j(10Ty/10) contributions in the numerator, and _bft. _2} (30)
j (00| T,|00) factors in the denominator. The correlation func- '

tion (26) is just a constantthe ratio of the 10 and 00 com-
ponent$ raised to thg power. and therefore the site-dependent transfer matrix is
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T, k(’t‘i‘/):eibk-f[(l_aq)e—a(f—f’)Z/Z tic cqnstanta;SO provides the usual 50 nm Ia}rge-scale
‘ L bending persistence lengttecall A=ab); we use this value
+ 5 g @A = YTehlet, (31) in all calculations in this paper.

We do not include any change in length of disordered
regions. Although single-stranded DX8SDNA) does have a
longer contour length than dsDNA of the same number of

At the nonkink sites, the transfer matrix takes the form of Eq
(6); in general the transfer matrix is:

L R baseq37], this simplification does not affect the results of
(Im[ T [1"'m”) :f d’t Y}, (O T @ 1) Yy () our calculation since we will not have a substantial fraction
of our molecules ever converted to disordered form. Segment
= (4m)¥2(- ™™ D il3(21, + 1)(21,+ 1) length changes in this type of model can be included if
Iplolg needed33,38.
f ; l 2 Il
XN+ D"+ 125+ D(m 0 - m) A. Persistence length in the presence of fluctuating
local defects
><<| I, |1>( I’ 5 |1> o
00 o/\c m=m m 1. Effect of flexible “hinge” defects
U e | We begin by computing the persistence length for our
><< s 1>[(1 -8 €% a model, in the presence of thermally excited bending defects.
0 00 . We treat the hinge case first, with emphasis on its application

- . ~ to the description of spontaneoudihermally) excited dis-
* &g @ Vi, (bD]i (BRI (k). ordered regions of the DNA double helix, motivated by the
(32) finding of Widom and Cloutier[27] that short, linear
o ] o ) dsDNAs cyclize far more readily than expected on the basis
which is just Eq(22) with the modification that no unkinked  of the usual semiflexible polymer with linear bending elas-
state occurs. Of course, a’ and y may also be made site- ity [29,3(.
dependent. _ Following our previous worK31], we take the hinge to
The same approach may be used to compute properties pipresent the bending energlyeo3 base region of disordered
a simple semiflexible polymer with quenched inhomgeneitygspNA. We use a bending constant for the hinge region of
in its bending stiffness, by using a sequence of transfer may' =1, corresponding to assuming a persistence length for the
trices of the form(6), with different bending stiffnesses. A hinge approximately 3 bases long. This choiceat¥a is
recent paper by Ranjitet al. has carried out this type of motivated by mechanical measurements which indicate
calculation, in order to study the effect of sequence inhomogspNA to have a persistence length of about one Ba&e
geneity of bending rigidity on end-to-end statistip$6].  our choicea’ =1 corresponds to about three times the rigidity
Similarly, different spontaneous bends could be put at eacfhferred from those experiments. Our use of a larger persis-
segment, to study the effect of sequence-directed bendgnce length takes into account the fact that our “hinge” re-
[24,47; the related case of a single “kink” at fixed location gion contains two side-by-site SSDNAs. We arrived at the 3

will be discussed below. bp defect size by considering that shorter defects will be
unable to form sharp bends.
I1l. FLEXIBILITY AND CYCLIZATION OF Oncea’ is set, the remaining parameter in the fluctuating
DOUBLE-STRANDED DNAS hinge model isu, the free energyin kgT units) associated

. _ . with creation of the defect region. Figuréa2shows how the
We now use the calculations of the previous sections Qyersjstence lengtt27) depends on this parameter. When this
study loop formation along molecules where no force is ap'energy cost is very large, the persistence length is equal to

pIied_. One.application_ is to DNA cyclization experiments, ab=50 nm. In the opposite limit where the free eneygys

and in particular experiments on sh¢rt100 bp molecules g5 o negative, the hinge defects dominate, and the per-
as studied by Cloutier and Widof27]. In our previous pa-  gjstence length is pushed downab There is a rather broad
per[31] we showed how fluctuating “flexible hinge” defects ansition between the stiff and highly flexible regimes
may explain the surprisingly high cyclization probability 0b- syretching from aboug.= +5 to+10. It is straightforward to
served by Cloutier and Widom. In this section we presenkp .y that for an unconstrained linear chain, the hinge den-

more details of those calculations. sity (n), i.e., the average number of hinges per segment, is
In this paper, we use a dsDNA segment length bof

=1 nm, or 3 bp. This is a both a convenient and realistic 1

cutoff on the simple bending elasticity models that we are (ny= T e (33

considering. This length scale also defines the approximate 1+ 5%

size of disordered double helix regions that are likely to im-

part strong bending flexibility. For segments shorter than Figure 2b) shows the hinge density as a functionofwvith
bp, generation of a highly flexible joint would require a se-a=50 anda’=1. Below we will briefly review how the cy-
ries of disordered segments, requiring a model including coelization data of Widom and Cloutief27] indicate u
operativity effects. For this segment length, the bending elas= 11kgT. This defect energy is well into the rare-defect re-
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FIG. 2. Persistence lengths for fluctuating-defect models of dsDNA. In all cases, the segmenbtehgiim and the unperturbed double
helix bending constar@=50, corresponding to 50 nm persistence lengihFlexible-hinge model persistence length as a function of defect
free energyu. The excited hinges have bending stiffn@$s 1. For x> 10, the defects are so rare that they do not significantly perturb the
net flexibility, but for x <10, the hinges reduce the net persistence ler{gjiHinge density as a function qf. For x> 10, it is less than
1 hinge per 1000 nm of the molecul@g) Spontaneous-bend “kink” model persistence length as a function of defect free eneigy
various preferred bend angles. The kink bend constant is fixat=80. In each case, large causes the persistence length to revert to the
unperturbed 50 nm value; small greatly reduces the net persistence length. Results are shown for arddesolid), 7/9 (dash, =/6
(short dash /4 (dot), and 7/2 (dash-dot As the bending angle is increased, the net persistence length is gradually reduced:/Ror a
angle, the kink-dense modébw ) has essentially zero persistence length as defined by tangent vector corre{dji@mmntaneous-bend
model persistence length as a function of defect free eneragt fixed preferred bend anghe= /4, for various kink flexibilities. Results
are shown fora’ =50 (dash-dot-dot 10 (dash-doy, 1 (dot), 0.1 (dash, and 0.01(solid). As the kinks are made more flexible, the effect of
the defects on persistence length becomes more pronounced.

gime: there is about 1 hinge per 1000 segméb®0 nm or  creation energyu, and the kink angley=0 (solid), =/9

3000 bp along an unconstrained molecule. (dash, w/6 (short dash /4 (dot), and /2 (dash-do, re-
spectively. The kink rigidity has been taken to he=50,
2. Effect of spontaneous bend (‘kink’) defects comparable to the double helix itself in this calculation. In all

We now consider thermally excited spontaneous bend d cases, a kink energy> 1 yields the unperturbed persistence

fects. While it is possible that local reorganizations of the ength of 50 nm, with a graduz_il reduction in persistence
double helix might give rise to thermally activated spontane-lf:“ngth for _5“2"’?”‘?”‘ _wrlere the kink defects become more
ous bends, this type of local defect is most likely to find IKely. In this *rigid kink” case, small bend angles can result
application to experiments on DNA-bending proteins orin @ appreciable reduction in the persistence letgttid),
drugs which generate local bends8,15,16, and which bind  While larger bend angles push it down to near Zela). The
non-specificallyi.e., equally well to any site along a dsDNA. ¢ase ofy=m/2 with frequent kinkd . <0) has a persistence
In this case, the defect free energydescribes the binding length of essentially zero, indicating that the tangent vector
free energy of the ligand or protein, as discussed in F3&i, dot product has near-zero correlation from segment to seg-
via u=—In c+const, where is the ligand or protein solution ment, as a result of the nearly perpendicular kink. Larger
concentration. bend angles generate a negative neighbor-tangent correla-
Figure Zc) shows how the effective persistence length oftion, and therefore an imaginary component of the persis-
a dsDNA(a=50) with fluctuating kinks depends on the kink tence length as defined £28).
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FIG. 3. Distribution of end-to-end radius for the simple semi-
flexible polymer model of dsDNAb=1 nm, a=50, no hinge or FIG. 4. J factors versus molecule length, for the simple semi-
kink defects, as a function of radius in units of molecule contour flexible polymer with persistence length 50 nm. Results are shown
length(R/1)), for the parallel-end boundary condition. Results arefor three different cyclization boundary conditions: paraflelvest
shown for molecular lengths 10@ightmost peak 170, 280, and  curve, antiparallel(middle curve, and free(highest curvi
3000(leftmost peaknm, corresponding to sequence lengths of 300,

510, 840, and 9000 bp. bution changes from being very asymmetric for nearly
straight moleculesright distribution to being more symmet-

Recent experiment§l15,16 indicate that many DNA- ric (left distribution), as expected for long chaif89].
bending proteins generate rather flexible kinks with persis- Experiments can be carried out so that the rate of cycliza-
tence lengths in the few-nm range. Figur@)2shows how tion of a dsDNA is proportional to the equilibrium probabil-
the effective persistence length of a dsDN&=50) with ity of the end-to-end vector being zef@2,29. For a free
fluctuating kinks depends on the kink creation engugyand ~ polymer (f=0) the quantity measured experimentally in such
the kink rigidity a’=0.01(solid), 0.1 (dash, 1 (dot), 10(dash  experiments is theJ‘factor”[24,30, which is essentially the
dot), and 50(dash dot dot respectively. The kink angleg  end-to-end vector distributioflL0) for R=0:
=/4 in this calculation.

Note that there is an appreciable shift in the thresheld 4w 21 (" @
for the persistence length to change from its highalue to J= N_AP(O) - ;N_AZ o dk KZ, (34)
its low-u value; this is due to the varying joint bending en-
tropy. For very smale’, kinks are made more probable by \yhereN, is Avogadro’s number. This quantity, expressed in
their large conformational entropy; for very largg the de- — nits of mol/litre (M) is a measure of the equilibrium con-
fept probability is reduced. This effect also occurs for the qntration of one end of the polymer at the other. Our calcu-
hinge defects. lations are for closure of dsDNAs without torsional con-
straint[29,30. We note that the # factor was omitted in Eq.

(4) and Eq(5) of Ref. [31] (although not in the numerical
calculations.

We can compute the complete end-to-end distribution Figure 4 shows) factors calculated for the simple semi-
p(R), the probability of the two ends of the polymer being aflexible polymer withb=1 anda=50, with no thermally ex-
certain distance from one another and having a specific orieited defects(persistence length 50 nmThe three curves
entation (boundary condition In the case that no external showJ versus molecule length, for three different cyclization
force is present, this distribution takes the foftl) whichis ~ boundary conditions: paralle{llowest curveg, antiparallel
a function only of the magnitude of the end-to-end distancgmiddle curve, and free(highest curvg The free boundary
R. condition has the highest cyclization rate of the three, since it

As a simple example, Fig. 3 shows the end-to-end radiufas the least severe conformational constraint. The antiparal-
distribution for the parallel boundary condition, for a semi- lel (hairpin-shapedclosure requires less bending than the
flexible polymer (no fluctuating defecis of persistence parallel(circulan case, and therefore has the higher probabil-
length 50 nm. The figure plots as a function of radius in ity. These three results are in excellent agreement with pre-
units of contour length, i.e., as a functionRfL. Results are  vious cyclization calculations for the semiflexible polymer
shown for molecular lengths 100, 170, 280, and 3000 nnj24,28-30. In each of the boundary condition cases of Fig. 4
dsDNAs (300, 510, 840, and 9000 pp~or very short mol- theJ factor has a peak near 500 bp, which is a compromise
ecules, the peak of the distribution is nédl.=1 since sig- between the entropic suppression bfor long molecules,
nificant bends are rare. For larger molecules, the peak of thend the energetitbending suppression for short molecules
distribution moves to lower values &%/L; the typical end- [29]. For ligation by DNA ligase, the usual way that cycliza-
to-end distance for a very long molecule scales Ris tion of dSDNA is done, the appropriate boundary condition is
« (2AL)Y2 [39], soR/L=(2A/L)Y2 The shape of the distri- the parallel one.

B. Zero force end-to-end distributions and cyclization
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FIG. 5. Effect of thermally activated flexible hinges on cyclization of short dsDNAs. Hinge flexibiléy34 (3 base persistence length
unperturbed double helix flexibility ie=50 (50 nm persistence length(a) J factor versus molecule length for parallel-end boundary
condition. Resultgfrom bottom to top for u=« (no hingg, 12, 11, and 10. Open circles show data of Widom and Clo(i#i&}. (b)
Influence of closure boundary condition on cyclization in the hinge méakeb0, a’=1, andu=11). J-factor versus molecule length is
plotted for parallel(squarel antiparallel(starg, and free(filled circleg closure boundary conditiongc) Number of hinge defects on
molecule in cyclized state, versus molecule length ferl1. For molecules shorter than 300 bp, cyclization becomes affected by molecules
with hinge excitations. Results are shown for the parallel boundary condisolid+squares and also for the antiparalldidashed
+filled circles) and free(dotted+stars boundary conditions(d) Nonlinear bending elasticity versus angle for hinge model, for defect
energiesu=1 (solid), 10 (dasheg and 20(dotted. The elasticity shows a “crossover” behavior from the small-angle, large-scale persistence
length(a=50) of 50 nm, to a much smaller rigidit@’ =1), at a critical bend angle controlled hy.

1. Role of excited hinge defects in cyclization of short dsDNAs |ength behavior of the double helix, but frequent enough to
For dsDNA, cyclization experiments have produced re_fac\|/l\|/t: tceor?seg(jalrne% c‘?Inserl]t(i)r:tg;]c’j’SoDrI!tpr:f\ﬁd—separa’[ion as a model
sults in good agreement with Fig. 4 for molecule Iengthsof such defects since the free energy of strand separation is
larger than 200 bp, but shorter molecules were not precisel

; ; ) Veasonably well knowh40]. Using the “standard model” of
studied before the recent work by Cloutier and WidBIal. b\ A melting [40,41), we estimated that the free energy cost
Remarkably, Cloutier and Widom found that for molecules ¢ tormation ¢ a 3 bp region of strand-separated dSDNA

of length near 100 bp, their measured J factors were in xshoyld be between 7 and kT, depending on sequence
cess of 10 times larger than those expected from classicaf31]. Use of such models in straightforward calculations of
semiflexible polymer theoryi.e., Fig. 4. Their experimental gpening fluctuations including cooperativity effects inside a
data indicate that double-helix looping at the 100 bp and 50@8.5 kb \-DNA indicates that at zero force and room tem-
bp scales cannot be described by the simple semiflexiblperature, about 0.3% of the bases along-BNA are un-
polymer model with persistence length 50 nm. paired at any given momemf#2]. Depending on sequence,
In our previous papdr31] we suggested a simple resolu- the probability é a 3 bpopening event might be as large as
tion to the paradox presented by Widom and Cloutier’s dataQ.1% per base, corresponding to a spacing of about 1 kb
based on the thermally-activated “flexible hinge” model de-between thermally activated “hinges.”
scribed above. In short, the idea is that at room temperature, Figure §a) shows J-factors calculated using our “flexible
thermally excited local defects in double helix structure oc-hinge” theory for a range of defect energjesalong with the
cur, which will be highly flexible relative to the unperturbed, experimental data of Widom and Cloutigt7]. For this cal-
base-paired and stacked double helix. These defects are rayalation,b=1 nm,a=50, anda’ =1. Results are shown for a
enough to not strongly perturb the large-scale persistenceange ofu values; we find thafl factors which are in accord
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with the short-molecule data occur far=211kgT. This is 10?

costly enough that for longer moleculesl50 bp, the prob- 10° ..

ability of hinge excitations is low enough that the polymer 10% caan L

reverts to being well-described as a semiflexible chain of 10° S

persistence length 50 nifFig. 2. For molecules=200 bp, .

the calculated factors closely approach those shown for the 10 Lgo o o7 °

simple semiflexible polymefFig. 4). g 107 0%, ey & 8 % ¥
In the short-molecule regime, boundary conditions have a 5 10° 5% 7,0 ' . o "

large effect on theJ factor. Figure ®h) compares the 10° «* o

parallel-endJ factors calculated for the parameteis 50, 10" * .7

a’=1, andu=11 (the choice which generates short-segment 10" L

J factors consistent with the Widom-Cloutier experiment 12

with results for antiparallel and free boundary conditions. 10 100 150 200 250 300 350 400

The antiparallel and free boundary conditions allow “hair- Loop size (bp)

pin” configurations to dominate thefactor. Our model pre-
dicts that for the antiparallel and free closures, the classical FIG. 6. Enhancement af factor of dsDNA(a=50) by a single
peak at 500 bp will be washed out by the straifpctor  preferred-angle kink located at the midpoint of the molecule. The
enhancement; the peak J-factor is shifted to below 100 bp.kink angle isy=/2 and is stiff(a’=50). J factors are shown for
Figure 5c) shows the average number of hinge defectsparallel(filled circles and free(filled squaresboundary conditions,
occuring in the cyclized configurations of the chain, minusin the absence of any other defedise., no thermally excited
the average occuring in all configurations, as a function ohinges. J factors are further affected by combining the fluctuating
molecular length. This idng,=—-dIn J/ du+{mMN, where(n) hinges and the permanent kink togethenoss-in-circles for parallel
is the hinge density for the unconstrained chain defined ifpoundary condition, and cross-in-squares for free boundary condi-
Eq.(33) andN is the number of segments, sintés the ratio tion). J factors of defect-free dsDNA are also shown for parallel
of the partition functions of cyclized and linear molecules. (0pen circlesand free(open squargsboundary conditions.
Under parallel boundary condition, for long chain00 bp,
An.,. approaches zero, since cyclization occurs easily withprediction of the thermally-excited hinge-defect explanation
out any severe bending of the chain. However, for chain®f the Widom-Cloutier experiments. Ranjiét al. [46] have
<150 bp,An,, rises from zero, and approaches 2 by aboutecently emphasized this for the free boundary conditions
100 bp. The cyclized configurations dominating for shortcase.
chains with parallel boundary condition have two excited Finally we note that the fluctuating-hinge model can be
hinges. This cyclized state becomes favorable for shorthought of as a semiflexible polymer, with a nonlinear bend-
chains since large-scale bending may be entirely eliminatethg elasticity (Sec. Il E 3. Figure %d) shows the effective
by forming a “squashed” configuration with two hinges. bending elasticity of the hinge model given by E3), as a
The hinge number for the parallel boundary conditionfunction of (1/2)(t-1")?=1-cos# where ¢ is the angle be-
case may be rationalized by considering the relative energyveen two adjacent tangent vectors. Results are shown for
costs of forming smoothly bent, one-hinge, and two-hinge,=1, 10, and 20. In the.=10 case, for very small bends
cyclized states. A smoothly bent cyclized chain with parallel(small 1-cosf), the bending energy increases at a rate de-
ends has bending energy of at least that of a circle, which igermined by the large-scale persistence length of 50(am
27*AIL whereL is the molecule length, andlis the 50 nm  =50). However, at 1-co8~0.2, there is a crossover in the
persistence length. Creation of one hinge allows part of th¢yending elasticity to a lower slope corresponding to the 50-
bending energy to be eliminated; the optimal energy befo|d higher flexibility of the excited hingéa’=1). The ex-
comesy+14A/L (the numerical factor of 14 can be found in perimentally observed cyclization can therefore be thought
Ref. [29]); this drops below that of the circle state fof A f a5 a consequence of the nonlinear elasticity of the double
<(27°-14)/ p. Plugging inA=150 bp andu=11 indicates  helix which makes high-curvature bends occur via “focus-
that the one-hinge state becomes favorableLik<80 bp.  jng” of bending into a localized defect. The point at which

However, the two-hinge state, with excitation energy Bas  thjs effect occurs is determined by the parametdFig. 5).
zerobending energy, and therefore becomes lower in energy

than the zero-hinge state whel/A<?/u. Taking A
=150 bp andu=11 shows that the two-hinge state becomes
preferable to the circle wheln< 135 bp. This estimate indi- Figure 6 shows how the dsDNA factor (a=50) is en-
cates that the double helix is sufficiently stiff that shorthanced by a single preferred-angle kink located at the mid-
chains should cyclize via creation of two hinge regions.  point of a linear dsDNA. The kink is considered to have an
The antiparallel and free boundary conditions have muctangle ofy=/2 and to be stiffa’ =50). J factors are shown
largerJ factors than the parallel boundary condition cgmee  for parallel(filled circles and free(filled squaresboundary
Fig. 5(b)]. Figure %c) shows that this is because the domi- conditions, in the absence of any other defdcts, no ther-
nant cyclization states for short molecules require only onenally excited hinges
hinge excitation. With the antiparallébr free boundary The enhancement af factor is similar to that generated
condition, closure can occur with essentially zero bendindyy the fluctuating-hinge modéFig. 5). Treatment of more
energy by making a “hairpin” configuration. This is a critical complex situations involving combinations of thermally ex-

2. Influence of a single preferred-angle kink on J-factor
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cited and fixed-position defects is straightforward: results for
combining the kink with fluctuating hinge$u=11) are
shown herdcross-in-circles for parallel boundary condition,
and cross-in-squares for free boundary condjtitinis inter-
esting to note thai factor for a kink plus fluctuating hinges £
is less than] factor for a kink only. 3
°
g
IV. END-TO-END DISTRIBUTIONS FOR DOUBLE- E
STRANDED DNA SEGMENTS UNDER TENSION
We now examine a few consequences of the results of the
previous section, for dsDNA molecules under tension. We 0'%_01 01 1
focus first on the end-to-end vector statistics, with some em- Force (pN)
phasis on how the distributions parallel to and perpendicular
to the force direction are related. We then show how loop 0.93
formation along a stretched dsDNA is suppressed by applied 0.92]®
force. c
oS 0.914
i3
5 0.904
A. End-to-end vector distribution E 0.894
We consider a force applied to a dsDNA in thdirection. § 0.88
Figure 7a) plots extensiorz) for the conventional semiflex- ® 0.874
ible polymer model of the double helixno fluctuating 0.86.
hinges, 50 nm persistence length, open cij¢clasd also the
extension for the “fluctuating hinge” model used to fit the 0851 . . . . . .
cyclization data of Cloutier and Widorf27] (b=1 nm, a 05 06 07 08 09 10
=50,a’=1, u=11, closed circlesin the preceeding section. force™ (pN™?)
The force-extension curves are essentially indistinguishable,
i.e., the fluctuating hinges do not generate enough flexibility 0.931
to cause an experimentally distinguishable signal in the 0.924 (c)
force-extension behavior, in agreement with a similar calcu- S 0.91]
lation by Wiggins and co-workers32]. B
Figure 7b) and 7c) show these two cases, with extension 0901
plotted against 1yf, as is often done in order to extract the ® 0.891
persistence length of dsDNA from experimental force- 3 0.88-
extension data using the semiflexible polymer mde]. S 0.87]
The simple semiflexible polymer and the polymer including 2
fluctuating hinges generate essentially the same behaviors. = 0.86
Linear fits of extension to 1/f over the 0.3 to 1 pN range 0.85+
usually used to extract persistence lengths result in 48.9 nm 05 06 07 08 09 10
for the semiflexible polymer without any fluctuating hinges, force™? (pN"?%)

and 48.5 nm for the polymer including the hinges. Again,

this shows that effects of the fluctuating hinges that we pro- FIG. 7. Effect of thermally activated flexible hinges far=11
pose to be responsible for the cyclization enhancement gin force-extension curve is negligiblea) Force-extension curves
Cloutier and Widom cannot be easily observed in forcefor defect-free dsDNAopen circles and for dsDNA with hinge
extension data, consistent with RE32]. fluctuation(filled circles; the two results coincidgb) and(c) Per-

The fluctuation of the end-to-end vector around its averSistence lengths for unperturbed dsDNA and dsDNA with hinge
age extension is routinely measured in single-molecule mdluctuation are extracted from the force-extension curve at high
nipulation of DNA experiments. We show distributions cal- force: 48.9 nm for unperturbed dsDNA, and 48.5 nm for dsDNA
culated for the semiflexible polymer model, along the forceth hinge fluctuation.
direction[longitudinal, Fig. 8)], and transverse to the force gy contrast, the transverse distribution is symmetric, and
direction[transverse, Fig.(@], for the semiflexible polymer nearly a pure Gaussian.
of total length 10 micron$30 kb) and persistence length 50 The moments of the two distributions shown in Fig&)8
nm (a=50,b=1 nm, no hinge fluctuationsat a force of 0.1 and 8§b) are related(see Appendix). Figure §c) shows a
pN. At this force the polymer is extended to about 53% of itscheck of one of these relations, between the first moment of
maximum length, as reflected by the peak near 5.3 micronshe longitudinal distributior(the average extensipand the
The longitudinal distribution is asymmetric around its peak,second moment of the transverse distribution. The ratio of
reflecting the symmetry-breaking effect of the applied forcethese two quantities is expected to be equal to the force di-
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FIG. 8. End-to-end distributions of a 3@m (30 kb) dsDNA, in
longitudinal (force) and transverse direction&) Open circles are
the longitudinal distribution,p(z), at f=0.1 pN. Solid line is a
Gaussian distribution with its peak matched to thatp@f). (b)
Open circles are transverse distributipfx), atf=0.1 pN. It can be
fit closely by a Gaussian distributidisolid ling). (c) The variance

of the transverse fluctuation is equal to the end-to-end distance di-

vided by force inkgT units ((kgT(2)/f), for all forces.

vided by kgT, independent of any details of the polymer
model; this relation is used tmeasureforces in single-

molecule manipulation of DNA experiments using magnetic

tweezer. Figure @) shows the moment ratio derived from
distributions at a series of forcéfilled squares, Fig. @)];
this matches the expected rafi&traight line, Fig. &)].
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FIG. 9. The general end-to-end distance distribution of a 334 nm
(1000 bp dsDNA at a forcef=0.04 pN. Herez is the coordinate of
the force direction, and is the coordinates of a direction transverse
to the force direction. The probability density is in units of #m

tion, for a 334 nm(1000 bp dsDNA at a force of 0.04 pN.
The results shown are for the semiflexible polymer with 50
nm persistence length without fluctuating hinge defdets
=50,b=1 nm). This general distribution has symmetry under
reflection ofx— —x, but no such symmetry in thedirection.
For this short molecule and low force, the widths of the
distribution are comparable to the average extension.

B. Force-dependent loop formation probability

The end-to-end distributions of the previous section can
be evaluated at zero distance, to predict loop-formation prob-
abilities analogous to those discussed in Sec. lll, but at non-
zero force. One expects a for€avhich appreciably extends
a polymer to strongly quench formation of loops along its
length, since a fluctuation which does mechanical weifl
must occur to spontaneously cyclize a segment of lerigth
under tension which stretches a chpdd]. This implies that
loop formation probability should be suppressed Jf)

«e P For forces less than=kgT/A=0.1 pN, a short
dsDNA segment will be only weakly extended, allowing

10
10°
0% ¢ ¢ 2 « o |

'0.00 004 008 0.12 0.16 0.20
Force (pN)

FIG. 10. Effect of force on) factors of dsDNA with different
lengths. Results are shownrfa 2 kb unperturbed dsDNAfilled

Figure 9 shows the form of the general distribution squarel an 1 kb unperturbed dsDNfstars, 0.5 kb without fluc-

p(x,2), wherez is the coordinate of the force direction, axd

tuating hinge defectsfilled circles, and 0.5 kb with fluctuating

is the coordinate of a direction transverse to the force direchinge defect§u=11,a’=1, open circles
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loop formation to occur against the applied tension via thergenerate the largé factors observed experimentally, while
mal fluctuation. retaining the well-established simple semiflexible polymer
Our approach can be used to directly calculate tensiotvehavior at larger scales. We have shown that our model
effects of loop formation probability, which is dependent onproduces) factors which converge to the predictions of the
both tension and loop length. Figure 10 shows dhiactor ~ semiflexible polymer model beyond 200 bp, and also provide
(defined in the same way as in Sec. IlI, only for a stretchedhe dSDNA entropic elasticity observed in single-molecule
chain as a function of force, for dsSDNA segments of 500 bp €XPeriments.
(circles, 1000 bp (starg and 2000 bp(squares long. A We previously noted that thé&factor for short molecules

“free” boundary condition was used in these calculationsVaS €xtremely sensitive to small changes in the hinge defect

For forces in excess of 0.1 pN, we observe the expecte§*citation energy, with aksT change inu resulting in a
linear dependence of lhon foEce. At 0.1 pN there is still roughly ninefold change id for 135 bp[31]. Recently, Ran-

. . . jith and colleague$46] have introduced sequence disorder
appreciable suppression &ty force for the 2 kb loofdJ is Jit 9
rfdpuced by mc?r% than tem%ld by a force of O.l)gllsiut into our model, and have found strong dependencé fat-

. . X tor on sequence reminiscent of the experimental results.
relatively little for the 500 bp loop. Our results are in good However, it remains to be seen if a sequence-dependent

agreement with recent analytical calculations by Sankararameory can explain the sequence-dependence observed by
manet al. [45]. o ~ Widom and Cloutief27].

Fluctuating-hinge excitations along the double helix |y this paper we have also considered the effect of the
might be expected to facilitate looping under tension. How-houndary conditions for cyclization on thefactor. We have
ever, for the caseu=11,a’=1) discussed above, the effect found an extremely strong dependence for short chains, de-
is negligible for the 1 kb and 2 kb loops of Fig. 10, so we dopending on whether cyclization is forced to occur with ends
not include them in the figure. The open circles in Fig. 10«parallel” (as is thought to be the case for cyclization using
show the ﬂUCtUating'hinge reSLﬂILzll, a’=1) relative to DNA |igase, or ends “antipara"e'_”
the usual semiflexible polymer modéilled circles for the The antiparallel closure could apply for a protein which
500 bp case. The effeCt Of the.ﬂuctuatin.g hinges fOI’ the 50@)|nds two Sequences so as to form a “hairpin” out of the
bp case amounts to a small increaseljrby about 10%, double helix, e.g., Gal repressdi0]. The latter, antiparallel,
similar to the zero-force enhancement. For shorter IOOpS, thBoundary condition huge]y enhances Cyc”zation of short
fluctuating hinge effect will lead to a stronger enhancementhains, since it reduces the number of hinge defects neces-
of J(f). sary to close the chain without bending energy from two, to
only one. In calculations of the number of excited hinge
defects we have shown that our model for parallel end clo-
sure indeed predicts that two hinges occur4dr50 bp mol-

We have generalized our previous work on use of transfeecules, while for antiparallel closure, only one hinge is gen-
matrix calculations for semiflexible polymef83], to com-  erated for short molecules. Results similar to the antiparallel
pute statistical distributions of the vector between two pointsase occur when a “free” closure boundary condition is used,
along a dsDNA. We have computed the transfer matrix elein accord with Ranjitret al.[46] who further showed that in
ments analytically for a wide variety of polymer models this case the single defect appears near the midpoint of the
which are variants on the usual semiflexible polymer modelmodecule; such a boundary condition might be realizable
We have paid particular attention to the semiflexible polymemrexperimentally in a cyclization experiment that uses flexible,
including localized “flexible hinge” and “spontaneously reactive end labels on dsDNA segments.
bent” excitations. The former provides a model for thermal To account for DNA looping facilitated by DNA bending
fluctuations of double helix structure which provide en-protein that binds to specific DNA sequences, we have cal-
hanced flexibility, while the latter provides a model for culatedJ factors for short dsDNA segments with a single
DNA-bending proteins binding and unbinding in thermal bend located at the middle of the molecule. The effect of
equilibrium. combination of a single bend, thermally excited flexible

Our calculations have emphasized calculation of the endhinges, and end orientation boundary conditions)dactor
to-end distributions for finite-length dsDNAs. For moleculeswere also computed.
under zero force, the probability of zero length of the end- The calculations of the present paper do not account for
to-end vector gives theJ“factor” commonly studied in cy- the torsional rigidity of dsDNA, which for shoit<200 bp
clization experiments. Cloutier and Widof7] experimen-  segments introduces appreciable helix “phasing” effects in
tally found aJ factor for~100 bp molecules in excess of.0 cyclization using DNA ligase. The twist rigidity of the
times larger than that expected from the semiflexible poly-double helix is sufficiently large that oscillations dfwith
mer model. This suggests that effects beyond that model fasegment length, with a period of about 10 bases, o2
cilitate cyclization of short molecules. We have proposedOur calculations are effectively for dsDNA with no twist
[31] that thermally activated localized flexible “hinges,” gen- rigidity, where we require only a tangent vector alignment
erated by helix opening, may provide an explanation forboundary condition for cyclization; we giv& factors inter-
those experiments. We find that includingk3I excitations mediate between the “in phase” and “out of phase” limits
(depending on DNA sequence,KsT can generate a flexible [29,30. Including the torsional rigidity and linking number
hinge of size from 2 bp to 8 bp longlocally reducing the constraint necessary to close a dsDNA is possible; however,
double helix persistence length to 3 bp, provide a way tdor dsDNA segments shorter than 200 bp, it is plausible that

V. CONCLUSION
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the same defects which facilitate dsDNA bending will facili-  The cumulants of end-to-end vector components are gen-
tate dsDNA twisting, reducing the effect of the linking num- erated using derivatives on force components, e.g.,
ber constraint od. Therefore a complete theory will require
not just linking number constraint but also possible softening (R) = kBTLnZ'
of the twist rigidity due to the hinge defects. af;

We have also carried out calculations for hdviactor is
suppressed by applied force. For loop sizes in the 500 bp to ilnzZ
2 kb range there is an enormous suppression by even small <Ri2> -(R)?*= (kBT)zﬁ(f_)z- (A2)
forces(0.2 pN. A wide variety of experimental possibilities !
exist for studying force dependence of looping, includingIn the context of this paper, these are cumulant moments of
loop-forming transcription factorgl7,18 and loop-forming  the direction-projected distribution functio$3).
restriction enzymepl9]. Although some experiments of this ~ We will assume thaEyme, is invariant under space ro-
type[18] have been done, the strong loop-length, force andation, which is true for a broad class of polymer models,
boundary-condition dependences of the cyclization probabilincluding those describing dsDNA under torsional stress
ity remain to be explored. [43], and with either continuum or discretized degrees of

Finally, we want to draw reader’s attention to other re-freedom[33]. In this case, the partition function must be a
cently reported methods to calculate the end-to-end distandenction only of the magnitude of the force, since this is the
distribution of a chain molecule: using infinite continued only preferred direction in the problem, i.&=Z(f). For the
fractions, Ref[48] provides methods for exact calculation of case where the applied force is near to theirection, i.e.,
the partition function of the stretched semiflexible polymer.|f,|<f, where f, =(f,,f,), writing the expansionf:[f§
Those results can be used to calculate zero-force end-to-erd? [Y2=f,+2 /(2f )+ O(f*) allows us to expand I&(f) in
distance distributions of the molecule with “fre€incon-  force components:
strained boundary conditioh32]. Another related recent pa- 2 4 2(1)
per[49] calculates the polymer end-to-end distribution in the _ rain 4
force direction, based on the knowledge of the force- InZ(f) = In Z(f,) + 2f, df, *Or). (A3
extension curve which can be experimentally obtained. The . i )
distribution function calculated from the force-extension YSind (A2), the first moment of the end-to-end vector in the

curve might be used to analyze the underlying elasticity of°"c€ direction, i.e., the extension, is

the polymer. dInZ(f din z(f
<RZ> = kBT # = kBT ( ) . (A4)
;I =of df
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This is easily generalized to show that th&t2 cumulant
of the transverse distribution is determined by the cumulants
of the longitudinal distribution:

APPENDIX: END-TO-END VECTOR MOMENT
RELATIONS FOR STRETCHED POLYMERS

A simple relation between moments of the end-to-end n (kgT/F)27C [ 2 -1
vector of a stretched polymer and the magnitude of the ex- (Rif‘)c: > B ( v . ) <R£>c-
ternal force holds when the energy function of the polymer is =1 ¢! dx? x=1
of the form (A7)
E-E _f.R (A1) Accordingly the longitudinal and transverse distributions,
~ —polymer : p(2) and p(x), are linearly related:
wheref is the applied forceR is the end-to-end vector of the N e LS oaeerymaees
polymer, andEqmeris the energy associated with the poly- p(2)= f_m dx p(x)f_w o e 0. (A8)

mer itself, i.e., elastic energy, self-interactions, or interac-
tions with other molecules free in solution. These exact relations hold for finite-length or self-interacting
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polymers where the end-to-end distributions may be far fromhold is for dsDNAs tethered to a surface, with sufficiently
Gaussian, and for situations such as low forces where thiew forces applied so that the surface substantially affects the
transverse fluctuations are large compared to the extensiopolymer fluctuations, thus breaking the rotational invariance
An experimental situation where these relations need nodf Z.
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