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We compute relative position distributions of distant sites along discretized semiflexible polymers, focusing
on encounter statistics for pairs of sites along a double-stranded DNA moleculesdsDNAd, using a transfer-
matrix approach. We generalize the usual semiflexible polymer, considering nonlinear elasticity effects arising
from inhomogeneities which either appear at any position via thermal fluctuation, or which occur at specific
“quenched” locations. We apply our theory to two problems associated with dsDNA looping. First, we discuss
how local flexible defects in double-helix structure facilitate cyclization of short dsDNA molecules. Flexible
defects greatly enhance cyclization rate, and strongly modify its dependence on the closure orientational
boundary condition. This effect is relevant to free-solution cyclization experiments, and to loop formationin
vivo. Second, we present calculations of force dependence of the probability of formation of loops along single
dsDNAs which show how the probability of loop formation is suppressed by tension.
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I. INTRODUCTION

The long double-stranded DNAsdsDNAd molecules in
the chromosomes of living cells exist in an intermediate state
of order interesting to consider using statistical mechanics.
Chromosomal DNAs—often centimeters in length—are spa-
tially ordered in the cellf1g. Some of this order is due to
protein-mediated associations of distant loci along chromo-
somal DNAs, as occurs during, e.g., gene regulationf2,3g,
site-specific DNA “cut-and-paste” recombinationf4g, and
general recombinationf5g. These chromosomal events re-
quire formation ofcrosslinksor synapsesof dsDNA mol-
ecules, generally mediated by proteins which bind the loop
boundariessFig. 1d.

If association of two sites along the same dsDNA mol-
ecule occurs, a dsDNA loop is formed, with the possibility
that the intervening dsDNA is free to fluctuate thermally. A
number of experiments suggest that at submicron scales, the
dynamics of dsDNA in cells is dependent on conformational
diffusion f6g. Formation of loops along a dsDNA via colli-
sions of sites brought together by conformational diffusion is
an important mechanism behind “higher-order” organization
of dsDNA in vivo f7,8g, and can be described using polymer
statistical mechanicsf9g.

Looping dynamics of dsDNAs in the cell involve a wide
range of proteins, for example DNA-bending proteins which
facilitate dsDNA loops and other “higher-order” nucleopro-
tein structuresf10–12g. Statistical-mechanical models for
higher-order DNA organizationin vivo, while valuable,
therefore tend toward the qualitative, since there are so many
unknowns. However, precise quantitative experimental study
of the proteins which mediate higher-order organization of
double helix DNA is commonplace in biochemistry labora-
tories. For example, recent single-molecule micromanipula-
tion studies have revealed many new aspects of the mechan-
ics and even basic biochemistry of DNA-bending proteins
f13–16g. These precise biophysical characterizations of inter-
actions of purified proteins with DNA motivate theoretical
study of DNA organization by proteins, and are first steps
toward building models ofin vivo chromosome dynamics.

Two examples of DNA-looping proteins being studied us-
ing single-molecule approaches are the LacR and GalR tran-
scriptional repressors, which bind to specific DNA se-
quences, and which can link two binding sites along a single
dsDNA. Finzi and Gelles observed formation and dissolution
of LacR-mediated-loops along single dsDNA molecules in a
classic studyf17g. More recent micromanipulation experi-
mentsf18g on GalR studied the role of DNA supercoiling
and the DNA-bending protein HU on the formation of a loop
between two GalR binding sites.

Another recent single-molecule experiment used the re-
striction enzyme BspMI, which binds to two copies of its
specific recognition site 58-ACCTGC, and therefore can
form a loop between two sites along a single dsDNAf19g.
Loop-opening events were observed when a BspMI-looped
l-DNA was put under large tension. Finally, we note that
loop formation along single-stranded nucleic acidssssNAd
has also been studied, where the loops are stabilized by
sequence-defined base-pairing interactionsf20,21g, thus not
requiring protein. In those ssNA experiments, the kinetics of
loop opening and closure as a function of applied tension
could be rather precisely characterized. These studies show
that loop closing and opening along individual biomolecules
can be quantitatively studied using micromanipulation ex-
periments.

Another motivation for theoretical study of loop forma-
tion comes from studies of circularizations“cyclization”d of
linear dsDNAs. Cyclization rate measurements have long
been used to study bending of dsDNAf22g. This approach
became widely used to study dsDNA flexibilityf23g, and is
now being used as a tool to study spontaneously bent dsDNA
f24,25g, and chemical factors which affect DNA conforma-
tion, such as DNA-bending proteinsf26g.

A recent study by Cloutier and Widomf27g examined
shorter dsDNA molecules than usually studied, with the re-
sult that anomalously large cyclization probabilities were ob-
served, relative to those expected theoretically from the
simple semiflexible polymer modelf28–30g. Those experi-
ments suggest that very tight dsDNA bends may occur more
frequently than expected from the semiflexible polymer
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model. These experiments have triggered theoretical study of
how nonlinear elasticity of the double helix can generate the
experimental results, with particular attention on the possi-
bility that localized, flexible defects in double helix structure
may play an important role in loop formation along short
dsDNAs f31,32g.

In this paper, we study DNA loop formation theoretically.
We calculate distribution functions for the difference in po-
sition of any two points along a discretized polymer, under
zero or nonzero tension. Our transfer matrix approach is
similar to that used in our previous paper studying DNA-
bending proteinsf33g. It describes the positional statistics for
a broad class of polymer models including the discretized
semiflexible polymer and variants on it with nonlinear elas-
ticity. One type of nonlinear elasticity originates from ther-
mally fluctuating localized defects, which might arise from

the action of drugs or proteins which induce “permanent”sor
“spontaneous”d bendsf33g, or thermally-excited regions of
modified flexibility f31g. Our calculations also allow us to
introduce inhomogeneities in shape or flexibility at fixed po-
sitions along a polymer chain, describing, e.g., sequence
variation of bending elasticity, or effects of proteins bound at
specific sequence sites.

Section II introduces our calculation method. We compute
the statistical distribution of the end-to-end vector, using
transfer matrices analytically expressed in a basis of spheri-
cal harmonics. For zero force, we obtain analytical results for
the tangent vector correlation function, and therefore the per-
sistence length and mean squared end-to-end vector.

We then discuss two applications to specific experimental
situations. Section III uses our theory to compute dsDNA
cyclization probabilitiessin the DNA cyclization literature,
the “J factor”d in the presence of thermally excited flexible
defects. These spontaneously excited localized flexible de-
fects may provide an explanation of the anomalously large
short-dsDNA cyclization rates observed by Cloutier and Wi-
dom f27g, or alternately are a model for proteins which fa-
cilitate double-helix bending by increasing its flexibility at
points where they bind. We show how these defects can sta-
tistically dominate the cyclized states, and we show how
changes in the cyclization boundary conditions drastically
affect theJ factor for short dsDNA segments.

If localized flexible defects are present, then for roughly
100 base-pairsbpd segments cyclized with a parallel-end
boundary conditionfFig. 1scdg two localized, hairpinlike de-
fects dominate the cyclized states, essentially eliminating the
need for any other bendingfFig. 1sddg. We also show that if
the synapsis boundary condition is changed to befree or
antiparallelonly one localized defect is necessary, enhancing
the cyclization probability for very short dsDNA segments.
For the antiparallel boundary conditions, the prominent peak
in cyclization probability for dsDNA lengths near 500 bp
seen in the classical harmonic-bending-energy theoryf29g is
entirely absent, with instead a monotonic increase in cycliza-
tion probability occuring as one goes to progressively shorter
molecular lengths. This result has strong implications forin
vivo dsDNA bending, where dsDNA loops or folds on short
length scales are indeed often seen to occur over very short
sequence distances.

We also compute the effect of permanent bends on ds-
DNA cyclization probability. Such permanent bends can be
created by DNA-bending proteins that bind to specific se-
quences.

The second main application of our theory, to loop forma-
tion in dsDNA molecules under tension, is discussed in Sec.
IV. We compute the end-to-end vector distribution of a ds-
DNA segment under force. The longitudinal and transverse
distributions are nearly Gaussian for longsmany kilobased
molecules. Non-Gaussian corrections become measurable for
molecules in the kilobase range, the size often studied in
single-molecule experiments on DNA transcriptionf34g. Our
main result is a computation showing how the probability of
dsDNA loops of roughly kilobaseskbd size is suppressed by
applied force. This effect should be directly measurable in
experiments on site-specific loop-forming proteins.

FIG. 1. dsDNA synapsis and loop formation.sad Synapsis be-
tween two dsDNA segmentsgray curvesd, mediated by protein-
DNA complexessblack circlesd. sbd Loop formation mediated by
proteins bound at two specific positions along a dsDNA molecule;
the boundary condition in this sketch hasa<90° synapsis angle
between the interacting sites.scd Cyclization of a linear dsDNA
molecule, by the action of the enzyme DNA ligasesblack circled,
which is thought to require a “parallel-end” boundary condition.sdd
Role of localized sharp bends in facilitating dsDNA looping for
parallel-end and antiparallel-end boundary condition.
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II. TRANSFER-MATRIX CALCULATION OF END-TO-END
DISTRIBUTIONS

We now compute the end-to-end vector distribution, using
a transfer matrix approach. We begin with the usual semi-
flexible polymer sSec. II Ad, including various boundary
conditions sSec. II Bd, for free, unstretched chainssSec.
II Cd, and and chains subjected to applied tensionsSec. II Dd.
We then generalize our model to include effects of localized
“defects,” e.g., flexible joints and spontaneous bendssSec.
II Ed. These localized defects are special cases of general,
nonlinear elasticity; the general case is not difficult to ana-
lyze sSec. II E 3d. For zero applied force, the orientational
correlation functions of all these models are of the simple
exponential form of the simple semiflexible polymersSec.
II E 4d, characterized by a single “persistence length.”

A. End-to-end vector distribution of discretized
semiflexible polymer

The energy of a continuum semiflexible polymer of con-
tour lengthL including the effect of an applied external force
in the ẑ direction,f = f ẑ, is

bE =E
0

L

dsFA

2
Sdt̂

ds
D2

− f ẑ · t̂G , s1d

where the polymer is described as a space curve:s is the arc
length parametrizing the curve, andt̂ is the unit tangent vec-
tor describing the curve conformation.A is the persistence
length, characterizing the bending rigidity of the polymer.
For f =0, over contour distanceA the tangent vector orienta-
tion becomes decorrelated. We consider the discretization of
this model,

bE = o
i=1

N−1Fa

2
st̂ i+1 − t̂ id2 − bfẑ · t̂ iG , s2d

where thet̂ i are tangent vectors describing orientations of the
successive segments of lengthb. The forcef is in kBT units
sdimensions 1/ lengthd. In the continuum limitb→0, the
bending elastic constants of the continuum and discrete mod-
els are related bya=A/b.

The probability densityrsRd for the end-to-end distance
R of this polymer is given by the average ofjst̂1, t̂Ndd3sR
−bo j=1

N−1t̂ jd over all the chain conformations, wherej is a
function that imposes a specific boundary condition. Decom-
posing the three-dimensional delta function into wave num-
ber components, and properly normalizing the average gives

rsRd =E d3k

s2pd3

3e−ik·R

E d2t̂1 ¯ d2t̂Nj expf− bE + ibk · o
j=1

N−1

t̂ jg

E d2t̂1 ¯ d2t̂Ne−bE

.

s3d

The numerator counts the number of configurations of the

polymer subject to the constraint imposed by the delta func-
tion. The denominator provides normalization, and is just the
total partition function for the linear chain with no constraint
applied. Thuss3d is the normalized probability density for
the end-to-end vector of the chain.

The expectation values3d may be written using a
k-dependent transfer matrixTkst̂ , t̂8d=eibk·t̂e−ast̂ − t̂8d2/2ebfẑ·t̂ as

rsRd =E d3k

s2pd3e−ik·R
E d2t̂1d

2t̂NjTk
N−1

E d2t̂1d
2t̂NT0

N−1

, s4d

where the operation of matrix multiplication is taken to in-
dicate integration over tangent vectorst̂ i. Denoting Zk

=ed2t̂1d
2t̂NjTk

N−1 andZ=ed2t̂1d
2t̂NT0

N−1, s4d becomes

rsRd =
ZsRd

Z
, s5d

where ZsRd=ed3ke−ik·RZk / s2pd3 is the partition function
subject to the constraint of end-to-end distance ofR and
boundary conditionj, and whereZ is the total partition func-
tion without any constraint.

The matrixTk can be computed in the basis of spherical
harmonics as

klmuTkul8m8l =E d2t̂d2t̂8Ylm
* st̂dTkst̂, t̂8dYl8m8st̂8d

= s4pd3/2s− 1dm8−m o
l1,l2,l3

i l3s2l1 + 1ds2l2 + 1d

3Îs2l + 1ds2l8 + 1ds2l3 + 1dS l l 2 l1
m 0 − m

D
3S l l 2 l1

0 0 0
DS l8 l3 l1

− m8 m8 − m m
D

3Sl8 l3 l1
0 0 0

De−ai l8sadi l2sbfd j l3sbkd

3Yl3,m8−msk̂d, s6d

using spherical harmonic expansions for the exponential
functions inTk, and expressing all integrals of spherical har-
monics in terms of Wigner-3J symbolsf35g. Here j l and i l
are spherical Bessel functions and modified spherical Bessel
functions of the first kind, respectively.

The transfer matrix fork =0, T0, used to compute the
partition function in the denominator, has a simpler form:

klmuT0ul8m8l = 4ps− 1dmdmm8o
l2

s2l2 + 1dÎs2l + 1ds2l8 + 1d

3Sl2 l l 8

0 0 0
DSl2 l l 8

0 m − m
De−ai l8sadi l2sbfd.

s7d

When the forcef is zero,s6d is simplified:
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klmuTkul8m8l = 4ps− 1dmdmm8o
l2

i l2s2l2 + 1dÎs2l + 1ds2l8 + 1d

3Sl2 l l 8

0 0 0
DSl2 l l 8

0 m − m
De−ai l8sad j l2sbkd.

s8d

For f =0, klmuT0ul8m8l=4pe−ai lsaddll8dmm8; the total partition
function isZ=f4pe−ai0sadgN−1 .

For our calculations, the matrix multiplications and the
integral overk are done numerically. Cutoffs of matrix di-
mension andk must be chosen large enough that the calcu-
lations are convergent. It is straightforward to incorporate
quenched disorder into the calculations, by multiplying a se-
ries of matrices that represents the sequence of disorder.

The same approach can be used to calculate the end-to-
end distribution of an arbitrary segment inside a long poly-
mer by consideringTk

N−1 in s4d to be a site-dependent matrix
multiplication. This is done by setting thek of j l3sbkd in s6d
to zero when outside the segment of interest.

B. Orientational boundary conditions

We will compute ZsRd with a few different types of
boundary conditions imposed on the ends. Different bound-
ary conditions provide models for different types of bio-
chemical reactions that stabilize dsDNA loops. Generally,
dsDNA loops mediated by a certain protein or protein com-
plex might require the two ends to meet at a certain angle. In
this type of situation we wish to computeZk subject to a
constraint functionj which counts only end meetings with
certain orientations.

A simple example discussed in Sec. III is cyclization of
dsDNA by the enzyme T4 DNA ligase, which requires the
two ends to meet one another aligned end-to-endf27g. We
will refer to this asparallel boundary condition, correspond-
ing to the choicej=d2st̂1, t̂Nd in s3d and s4d.

For other enzymes, the two ends might be required to
meet in antiparallel alignment, so as to form a “hairpin”
structure. This boundary condition is expressed byj
=d2st̂1,−t̂Nd. More generally, we might have the requirement
that the two ends meet at afixed relative anglea, requiring
j=dst̂1·t̂N−ad.

These boundary conditions are handled by conversion of
the constraint functionj to a matrix acting on the end orien-
tations:

Zk = o
l1,m1

o
lN,mN

E d2t̂1d
2t̂Njkt̂1ul1m1lkl1m1uTk

N−1ulNmNl

3klNmNut̂Nl. s9d

Thek-dependent partition functionZk reduces to the follow-
ing for the cases listed above:

parallel: o
lm

klmuTk
N−1ulml

free: 4pk00uTk
N−1u00l

antiparallel: o
lm

s− 1dlklmuTk
N−1ulml

fixed relative angle: s2pd−1o
lm
E

−`

`

dq e−iqa j lsqd4pi l

3klmuTk
N−1ulml.

C. End-to-end distribution for zero applied force

For applications to “free” molecules in solution, e.g.,
equilibrium cyclizationsSec. IIId, the external tensionf is
zero. In this caseZk is isotropic, depending only onuk u.
Expanding e−ik·R in spherical coordinates, the end-to-end
vector distribution becomes

rsRd = s2pd−3Z−1E d3k e−ik·RZk

= 4ps2pd−3Z−1o
l,m

s− 1dl+mil

3E
0

`

dk k2j lskRdZkE d2k̂Yl,m
* sk̂dYl,msR̂d

= 4ps2pd−3Z−1E
0

`

dk k2j0skRdZk, s10d

This distribution is isotropic, and is a function of the radial
coordinate only:

rsRd =
2

p

1

Z
E

0

`

dk k2R2j0skRdZk. s11d

These distributions will be used in Sec. III to compute equi-
librium cyclization probabilities for free chains.

D. End-to-end distribution for polymer under force

In the case thatf is nonzero,Zk is axisymmetric around
the forceẑd direction. The integral over the azimuthal angle
of k can be done, leaving integrals over the magnitude and
polar angle:

rsRd = s2pd−3Z−1E d3k e−ik·RZk

= s2pd−3s4pdZ−1o
l,m

s− 1dl+milE
0

`

dk k2j lskRd

3E d2k̂ ZkYl,m
* sk̂dYl,msR̂d

= s2pd−2Z−1o
l

s− 1dli ls2l + 1dPlsxRd

3E
0

`

dk k2j lskRd E dxkPlsxkdZk , s12d

where xk;cossẑ·k̂d. This distribution is a function of the
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magnitude ofR, and its angle relative to thez axis as speci-

fied by xR;cossẑ·R̂d.
In single-molecule magnetic tweezer micromanipulation

of DNA experimentsf36g, the fluctuations of the end-to-end
vector under constant-force conditions may be directly ob-
served, and thus the complete end-to-end distribution mea-
sured. Thus, the full vector distributions12d can be measured
experimentally. However, the one-dimensional distributions
of componentsof the end-to-end vector are usually mea-
sured, i.e., end-to-end vector componentslongitudinal and
transverseto the force direction. The moments of these two
one-dimensional distributions are related; one of these rela-
tions is widely used to measurescalibrated forces in magnetic
tweezer experimentssAppendix d f36g.

The distribution of the projectionl of the end-to-end vec-

tor along any direction described by unit vectorl̂ sthe dis-

tribution of the one-dimensional variablel;R ·l̂d is s12d:

rsld =E d3R rsRddsl − R · l̂d

= s2pZd−1E
−`

`

dq e−iqlE d3k Zkd3sk − ql̂d

= s2pZd−1E
−`

`

dq e−iqlZk=ql̂. s13d

The projected distribution requires onlyZk evaluated along

the wave number axisk =ql̂.

E. Localized hinge and kink defects in thermal equilibrium

The above calculations have been applied to the simple
semiflexible polymer, each segment of which was considered
to have the same flexibility and geometrical properties. How-
ever, virtually the same calculations can be applied to more
complex and inhomogeneous situations, such as localized
defects in double helix structure which impart local changes
in dsDNA flexibility. Such local defects might be transiently
thermally activateds“annealed”d, or alternately located at
specific, fixed positionss“quenched”d. In either case, includ-
ing such defects amounts to replacement of the simple trans-
fer matricesTk discussed above. In this subsection we de-
scribe transfer matrices which generate highly flexible
“hinge” sites, and local spontaneous bends characterized by
preferred bend angles.

By summing out the defect variables, these models also
can be considered to describe strongly nonlinear bending
elasticity. Despite the complication of nonlinear bending
elasticity, at zero force, the orientational correlations in these
theories retain a simple exponential decay, allowing one to
define a zero-force persistence length.

1. Thermally excited flexible “hinges”

Double-helix DNA is considered to be a stiff polymer,
with a persistence length of about 50 nm under physiological
conditionsf23,43g. This stiffness is a result of double helix
structure, which is made robust by base-pairing and base-

stacking interactions. By comparison, the covalently bonded
sugar-phosphate backbones are completely flexible, charac-
terized by a persistence length of about 0.7 nmf37g. This
suggests a mechanism for generation of localized regions of
extreme flexibility along the double helix: local disruption of
base interactions may give rise to regions where the double
helix can be bent easily. Such disruptions might occur by
thermal fluctuations which open bases in a localized region
of the double helixf31g, action of proteins which locally
disrupt double helix structure so as to generate local
“hinged” regionsf33g, and chemical modification of double
helix DNA which permanently disrupts base pairing in a lo-
calized region, for example by removal of one or a few bases
along one strand, or by removal of part of one strand alto-
gether.

We focus in this section on “annealed” hinge defects, with
the simplification that each site along the molecule has an
equal defect-formation probability. Such defects are models
for the first two situations listed above, with the condition in
the protein case that binding-unbinding equilibrium occurs
sthis may be less common than generally assumed, seef16gd.
We suppose that this type of defect changes the bending
stiffness of our chain at one of its vertices froma to a8. The
energy of the molecule with these hinge excitations possible
at each of its vertices is

bE = o
i=1

N−1F sdni,0
a + dni,1

a8d

2
st̂ i+1 − t̂ id2 + mdni,1

− bft̂ i · ẑG ,

s14d

where theni are two-state variables, indicating whether seg-
ment i is either in double helix formsni =0d or contains a
hinge defectsni =1d. The defect creation energym controls
the probability that a defect appears at any particular loca-
tion, and represents either the free energy cost of generating
a local defectf31g, or for applications to protein-generated
hinges, the binding free energyf33,44g. Note m here has
opposite sign tom of f33,44g.

Including the effect of these hinges,s3d should be re-
placed with

rsRd =E d3k

s2pd3e−ik·R

E d2t̂1 ¯ d2t̂Njeibk·o
j=1

N
t̂ j o

n1,¯,nN−1

e−bE

E d2t̂1 ¯ d2t̂N o
n1,¯,nN−1

e−bE

.

s15d

After summing overhnij, the transfer matrix becomes

Tkst̂, t̂8d = eibk·t̂fe−ast̂ − t̂8d2/2 + e−a8st̂ − t̂8d2/2−mgebfẑ·t̂ , s16d

or in spherical harmonic representation

klmuTkul8m8l =E d2t̂ d2t̂8Ylm
* st̂dTkst̂, t̂8dYl8m8st̂8d

= s4pd3/2s− 1dm8−m o
l1,l2,l3

i l3s2l1 + 1d

3s2l2 + 1dÎs2l + 1ds2l8 + 1ds2l3 + 1d
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3S l l 2 l1
m 0 − m

DS l l 2 l1
0 0 0

D
3S l8 l3 l1

− m8 m8 − m m
DSl8 l3 l1

0 0 0
D

3fe−ai l8sad + e−m−a8i l8sa8dg

3i l2sbfd j l3sbkdYl3,m8−msk̂d. s17d

2. Spontaneous bends (“kinks”)

Many proteins which bind to the DNA double helix gen-
erate local bends, with.90° deflections generated over just
a few base pairs. The net flexibility of the protein-DNA com-
plex can be modified as well; for example, the DNA-bending
proteins HMGB1 and NHP6A generate severe bends, but
which appear to be more flexible than the bare double helix
f16g. Here we discuss the appearance of such “kinks” in
thermal equilibrium, which in the context of the proteins
means equilibration of binding and unbinding processes. We
consider for the moment nonspecific binding where each
DNA site is equally likely to be bound by protein. The cal-
culations of this section include analytical expressions for
transfer matrices of the models introduced inf33g.

The energy including thermally equilibrated kinks is

bE = o
i=1

N−1Fdni,0
a

2
st̂ i+1 − t̂ id2 +

dni,1
a8

2
st̂ i · t̂ i+1 − gd2 + mdni,1

− bft̂ i · ẑG , s18d

wherea8 is the bending modulus of the kink, andg is the
cosine of the preferredslowest-energyd kink anglef33g.

Similar to the case of fluctuating hinges, the transfer ma-
trix for s18d is

Tkst̂, t̂8d = eibk·t̂fe−ast̂ − t̂8d2/2 + e−sa8/2dst̂ · t̂8 − gd2−mgebfẑ·t̂ .

s19d

The functione−sa8/2dst̂ · t̂8−gd2 can be decomposed:

e−sa8/2dst̂ · t̂8 − gd2 =E dt dst̂ · t̂8 − tde−sa8/2dst − gd2

=
1

2p
E dq eiqt̂·t̂8E dt es−a8/2dst − gd2−iqt

= 4po
l,m

ilYl,m
* st̂dYl,mst̂8d

3SÎ 1

2pa8
E

−`

`

dq jlsqde−q2/2a8−iqgD .

s20d

If we define

hlsa8,gd = i lÎ 1

2pa8
E

−`

`

dq jlsqde−q2/2a8−iqg, s21d

the spherical harmonic representation ofTkst̂ , t̂8d becomes

klmuTkul8m8l =E d2t̂ d2t̂8Ylm
* st̂dTkst̂, t̂8dYl8m8st̂8d

= s4pd3/2s− 1dm8−m o
l1,l2,l3

i l3s2l1

+ 1ds2l2 + 1dÎs2l + 1ds2l8 + 1ds2l3 + 1d

3S l l 2 l1
m 0 − m

DS l l 2 l1
0 0 0

D
3S l8 l3 l1

− m8 m8 − m m
DSl8 l3 l1

0 0 0
D

3fe−ai l8sad + e−mhl8sa8,gdg

3i l2sbfd j l3sbkdYl3,m8−msk̂d. s22d

3. Nonlinear bending elasticity in annealed-defect models

Above, we have considered thermally fluctuatings“an-
nealed”d local defects, using excitations which change
double helix elasticity, or introduce “kinks” of preferred
angle. These models are still homogeneous, since every site
is described by the same transfer matrix. Furthermore, since
we have not introduced any couplings“cooperativity”d be-
tween adjacent defect variablesni, we proceeded above by
summing over thembeforecarrying out the matrix multipli-
cations. Our calculations are easily seen to be equivalent to
homogeneous semiflexible polymers with nonharmonic
bending elasticity.

For example, for the “hinge” defects of Sec. II E 1, the net
bending energy of one of the segment-segment joints ofs16d
is

bEbst̂, t̂8d = − lnfe−sa/2dst̂ − t̂8d2 + e−me−sa8/2dst̂ − t̂8d2g

=
a

2
st̂ − t̂8d2 − lnf1 + e−mefsa−a8d/2gst̂ − t̂8d2g.

s23d

Consider the casea.a8 andm.0, describing rare, flexible
hinge defects; then, for sufficiently small bends the linear
elastic energysa/2dst̂ − t̂8d2 dominates. However, for larger
bends, the termsa8 /2dst̂ − t̂8d2, characterized by a smaller
bending rigiditysa8,ad takes over. The crossover from the
small-bend to tight-bend behavior occurs whenst̂ − t̂8d2/2
=1−t̂ ·t̂8<m / sa−a8d. Thus the fluctuating-hinge calculation
can also be thought of as describing a homogeneous semi-
flexible polymer with strongly nonlinear bending elasticity.

The general case is where the segment-segment joint
bending energy is described by a functiongst̂ ·t̂8d, which can
be expanded in Legendre polynomials:
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e−bEbst̂,t̂8d ; gst̂ · t̂8d = o
l

2l + 1

2
ClPlst̂ · t̂8d

= 2po
lm

ClYlm
* st̂dYlmst̂8d, s24d

where the expansion coefficients areCl =e−1
1 Plsxdgsxddx. The

generalization of the transfer matrixs6d is

klmuTkul8m8l =E d2t̂ d2t̂8Ylm
* st̂dTkst̂, t̂8dYl8m8st̂8d

=
1

2
s4pd3/2s− 1dm8−m o

l1,l2,l3

i l3s2l1 + 1ds2l2 + 1d

3Îs2l + 1ds2l8 + 1ds2l3 + 1dS l l 2 l1
m 0 − m

D
3S l l 2 l1

0 0 0
DS l8 l3 l1

− m8 m8 − m m
D

3Sl8 l3 l1
0 0 0

DCl8i l2sbfd j l3sbkdYl3,m8−msk̂d.

s25d

4. Zero-force orientational correlations and persistence
length

The low-force elastic response of the usual semiflexible
polymer is characterized by its persistence length, defined to
be the tangent-tangent correlation length measured along the
chain. In the discrete models with annealed local defects dis-
cussed above, thef =0 tangent vector correlation function
has exactly the same form as in the simple semiflexible poly-
mer, i.e.,kt̂ i ·t̂ i+jl=e−jF, whereF depends on the parameters
describing the defects. Thus a persistence length for the
annealed-hinge and kink models can be defined viaAeff
=b/F, whereb is the segment length.

To see this, use the transfer matricess6d for the casef
=0 andk=0 to compute the expectation value of two tangent
vectors separated byj segments,

kt̂0 · t̂ jl =
E d2t̂0d

2t̂ jst̂0 · t̂ jdkt̂0uT0
j ut̂ jl

E d2t̂0d
2t̂ jkt̂0uT0

j ut̂ jl
=
E d2t̂0st̂0 · ẑdkt̂0uT0

j uẑl

E d2t̂0kt̂0uT0
j uẑl

.

s26d

The dot product in the numerator ofs26d is proportional to
Y10st̂0d, selecting theY10st̂0d component ofT0. The integral in
the denominator selects theY00st̂0d component ofT0. For
zero force and wave number, the annealed-defect transfer
matrices s17d and s19d are diagonal sproportional to
dll8dmm8d, since in the absence of the vectorsf andk, T0st̂ , t̂d
is a function oft̂ ·t̂8. The matrix product reduces to a product
of j k10uT0u10l contributions in the numerator, and
j k00uT0u00l factors in the denominator. The correlation func-
tion s26d is just a constantsthe ratio of the 10 and 00 com-
ponentsd raised to thej power.

F is therefore just the log of that ratio:

F = lnSe−ai0sad + e−m−a8i0sa8d

e−ai1sad + e−m−a8i1sa8d
D , s27d

for fluctuating flexible hinges. Ins27d the persistence length
is a simple, positive real number, as for the simple semiflex-
ible polymer.

For the fluctuating kinksspontaneous bendd case the per-
sistence length takes the form

F = lnSe−ai0sad + e−mh0sa8,gd
e−ai1sad + e−mh1sa8,gdD , s28d

wherehlsa8 ,gd is as defined bys21d. The situation is more
complicated in this case: the persistence length is a function
of both the polymer intrinsic persistence lengtha, and the
kink parametersg anda8. The interior of the log is no longer
constrained to be positive: for sharp and frequent bends, the
adjacent-neighbor tangent correlationfthe argument of the
logarithm in s28dg can become negativessee belowd. In this
case, the tangent correlations are “antiferromagnetic” and the
correlations “ring down” with oscillating sign. The persis-
tence length can still be defined, but it will have an imagi-
nary partpi.

The general case for bending elasticity described by a
function gst̂ ·t̂8d as in s24d is

F = ln1E−1

1

P0sxdgsxddx

E
−1

1

P1sxdgsxddx2 . s29d

F. Permanent bends at fixed locations

Above, we have considered spontaneous bends generated
in thermal equilibrium, for example by binding or unbinding
of DNA-bending proteins. However, it is possible that an
irreversibly-bound proteinf16g sor a chemical defect in the
double helixd might generate a bend at some specific se-
quence position. This situation can be handled by making the
transfer matrix segment dependentf33g. Here, this amounts
to replacingTk

N−1 sand T0
N−1d in s4d by the multiplication

pi=1
N−1Ti,k, whereTi,k is the site dependent matrix.
We illustrate this using the example of a permanent kink

at a siteq in a chain which is an otherwise homogeneous
semiflexible polymer. The energy function is

bE = o
i=1

N−1F s1 − di,qda
2

st̂ i+1 − t̂ id2 +
di,qa8

2
st̂i · t̂i+1 − gd2

− bft̂ i · ẑG s30d

and therefore the site-dependent transfer matrix is

STATISTICS OF LOOP FORMATION ALONG DOUBLE… PHYSICAL REVIEW E 71, 061905s2005d

061905-7



Ti,kst̂, t̂8d = eibk·t̂fs1 − di,qde−ast̂ − t̂8d2/2

+ di,qe
−sa8/2dst̂ · t̂8 − gd2gebfẑ·t̂ . s31d

At the nonkink sites, the transfer matrix takes the form of Eq.
s6d; in general the transfer matrix is:

klmuTi,kul8m8l =E d2t̂ d2t̂8Ylm
* st̂dTkst̂, t̂8dYl8m8st̂8d

= s4pd3/2s− 1dm8−m o
l1,l2,l3

i l3s2l1 + 1ds2l2 + 1d

3Îs2l + 1ds2l8 + 1ds2l3 + 1dS l l 2 l1
m 0 − m

D
3S l l 2 l1

0 0 0
DS l8 l3 l1

− m8 m8 − m m
D

3Sl8 l3 l1
0 0 0

Dfs1 − di,qde−ai l8a

+ di,qhl8sa8,gdgi l2sbfd j l3sbkdYl3,m8−msk̂d,

s32d

which is just Eq.s22d with the modification that no unkinked
state occurs. Of course,a, a8 andg may also be made site-
dependent.

The same approach may be used to compute properties of
a simple semiflexible polymer with quenched inhomgeneity
in its bending stiffness, by using a sequence of transfer ma-
trices of the forms6d, with different bending stiffnessesai. A
recent paper by Ranjithet al. has carried out this type of
calculation, in order to study the effect of sequence inhomo-
geneity of bending rigidity on end-to-end statisticsf46g.
Similarly, different spontaneous bends could be put at each
segment, to study the effect of sequence-directed bends
f24,47g; the related case of a single “kink” at fixed location
will be discussed below.

III. FLEXIBILITY AND CYCLIZATION OF
DOUBLE-STRANDED DNAS

We now use the calculations of the previous sections to
study loop formation along molecules where no force is ap-
plied. One application is to DNA cyclization experiments,
and in particular experiments on shorts<100 bpd molecules
as studied by Cloutier and Widomf27g. In our previous pa-
per f31g we showed how fluctuating “flexible hinge” defects
may explain the surprisingly high cyclization probability ob-
served by Cloutier and Widom. In this section we present
more details of those calculations.

In this paper, we use a dsDNA segment length ofb
=1 nm, or 3 bp. This is a both a convenient and realistic
cutoff on the simple bending elasticity models that we are
considering. This length scale also defines the approximate
size of disordered double helix regions that are likely to im-
part strong bending flexibility. For segments shorter than 3
bp, generation of a highly flexible joint would require a se-
ries of disordered segments, requiring a model including co-
operativity effects. For this segment length, the bending elas-

tic constanta=50 provides the usual 50 nm large-scale
bending persistence lengthsrecall A=abd; we use this value
in all calculations in this paper.

We do not include any change in length of disordered
regions. Although single-stranded DNAsssDNAd does have a
longer contour length than dsDNA of the same number of
basesf37g, this simplification does not affect the results of
our calculation since we will not have a substantial fraction
of our molecules ever converted to disordered form. Segment
length changes in this type of model can be included if
neededf33,38g.

A. Persistence length in the presence of fluctuating
local defects

1. Effect of flexible “hinge” defects

We begin by computing the persistence length for our
model, in the presence of thermally excited bending defects.
We treat the hinge case first, with emphasis on its application
to the description of spontaneouslysthermallyd excited dis-
ordered regions of the DNA double helix, motivated by the
finding of Widom and Cloutierf27g that short, linear
dsDNAs cyclize far more readily than expected on the basis
of the usual semiflexible polymer with linear bending elas-
ticity f29,30g.

Following our previous workf31g, we take the hinge to
represent the bending energy of a 3 base region of disordered
dsDNA. We use a bending constant for the hinge region of
a8=1, corresponding to assuming a persistence length for the
hinge approximately 3 bases long. This choice ofa8!a is
motivated by mechanical measurements which indicate
ssDNA to have a persistence length of about one basef37g;
our choicea8=1 corresponds to about three times the rigidity
inferred from those experiments. Our use of a larger persis-
tence length takes into account the fact that our “hinge” re-
gion contains two side-by-site ssDNAs. We arrived at the 3
bp defect size by considering that shorter defects will be
unable to form sharp bends.

Oncea8 is set, the remaining parameter in the fluctuating
hinge model ism, the free energysin kBT unitsd associated
with creation of the defect region. Figure 2sad shows how the
persistence lengths27d depends on this parameter. When this
energy cost is very large, the persistence length is equal to
ab=50 nm. In the opposite limit where the free energym is
small or negative, the hinge defects dominate, and the per-
sistence length is pushed down toa8. There is a rather broad
transition between the stiff and highly flexible regimes
stretching from aboutm= +5 to+10. It is straightforward to
show that for an unconstrained linear chain, the hinge den-
sity knl, i.e., the average number of hinges per segment, is

knl =
1

1 +
i0sad
i0sa8d

emesa8−ad
. s33d

Figure 2sbd shows the hinge density as a function ofm with
a=50 anda8=1. Below we will briefly review how the cy-
clization data of Widom and Cloutierf27g indicate m
<11kBT. This defect energy is well into the rare-defect re-
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gime: there is about 1 hinge per 1000 segmentss1000 nm or
3000 bpd along an unconstrained molecule.

2. Effect of spontaneous bend (‘kink’) defects

We now consider thermally excited spontaneous bend de-
fects. While it is possible that local reorganizations of the
double helix might give rise to thermally activated spontane-
ous bends, this type of local defect is most likely to find
application to experiments on DNA-bending proteins or
drugs which generate local bendsf13,15,16g, and which bind
non-specifically, i.e., equally well to any site along a dsDNA.
In this case, the defect free energym describes the binding
free energy of the ligand or protein, as discussed in Ref.f33g,
via m=−ln c+const, wherec is the ligand or protein solution
concentration.

Figure 2scd shows how the effective persistence length of
a dsDNAsa=50d with fluctuating kinks depends on the kink

creation energym, and the kink angleg=0 ssolidd, p /9
sdashd, p /6 sshort dashd, p /4 sdotd, andp /2 sdash-dotd, re-
spectively. The kink rigidity has been taken to bea8=50,
comparable to the double helix itself in this calculation. In all
cases, a kink energym@1 yields the unperturbed persistence
length of 50 nm, with a gradual reduction in persistence
length for smallerm where the kink defects become more
likely. In this “rigid kink” case, small bend angles can result
in an appreciable reduction in the persistence lengthssolidd,
while larger bend angles push it down to near zerosdotd. The
case ofg=p /2 with frequent kinkssmø0d has a persistence
length of essentially zero, indicating that the tangent vector
dot product has near-zero correlation from segment to seg-
ment, as a result of the nearly perpendicular kink. Larger
bend angles generate a negative neighbor-tangent correla-
tion, and therefore an imaginary component of the persis-
tence length as defined bys28d.

FIG. 2. Persistence lengths for fluctuating-defect models of dsDNA. In all cases, the segment lengthb=1 nm and the unperturbed double
helix bending constanta=50, corresponding to 50 nm persistence length.sad Flexible-hinge model persistence length as a function of defect
free energym. The excited hinges have bending stiffnessa8=1. Form.10, the defects are so rare that they do not significantly perturb the
net flexibility, but form,10, the hinges reduce the net persistence length.sbd Hinge density as a function ofm. For m.10, it is less than
1 hinge per 1000 nm of the molecule.scd Spontaneous-bend “kink” model persistence length as a function of defect free energym, for
various preferred bend angles. The kink bend constant is fixed ata8=50. In each case, largem causes the persistence length to revert to the
unperturbed 50 nm value; smallm greatly reduces the net persistence length. Results are shown for anglesg=0 ssolidd, p /9 sdashd, p /6
sshort dashd, p /4 sdotd, andp /2 sdash-dotd. As the bending angle is increased, the net persistence length is gradually reduced. For ap /2
angle, the kink-dense modelslow md has essentially zero persistence length as defined by tangent vector correlations.sdd Spontaneous-bend
model persistence length as a function of defect free energym, at fixed preferred bend angleg=p /4, for various kink flexibilities. Results
are shown fora8=50 sdash-dot-dotd, 10 sdash-dotd, 1 sdotd, 0.1 sdashd, and 0.01ssolidd. As the kinks are made more flexible, the effect of
the defects on persistence length becomes more pronounced.
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Recent experimentsf15,16g indicate that many DNA-
bending proteins generate rather flexible kinks with persis-
tence lengths in the few-nm range. Figure 2sdd shows how
the effective persistence length of a dsDNAsa=50d with
fluctuating kinks depends on the kink creation energym, and
the kink rigidity a8=0.01ssolidd, 0.1sdashd, 1 sdotd, 10 sdash
dotd, and 50sdash dot dotd, respectively. The kink angleg
=p /4 in this calculation.

Note that there is an appreciable shift in the thresholdm
for the persistence length to change from its high-m value to
its low-m value; this is due to the varying joint bending en-
tropy. For very smalla8, kinks are made more probable by
their large conformational entropy; for very largea8, the de-
fect probability is reduced. This effect also occurs for the
hinge defects.

B. Zero force end-to-end distributions and cyclization

We can compute the complete end-to-end distribution
rsRd, the probability of the two ends of the polymer being a
certain distance from one another and having a specific ori-
entationsboundary conditiond. In the case that no external
force is present, this distribution takes the forms11d which is
a function only of the magnitude of the end-to-end distance
R.

As a simple example, Fig. 3 shows the end-to-end radius
distribution for the parallel boundary condition, for a semi-
flexible polymer sno fluctuating defectsd of persistence
length 50 nm. The figure plotsr as a function of radius in
units of contour length, i.e., as a function ofR/L. Results are
shown for molecular lengths 100, 170, 280, and 3000 nm
dsDNAs s300, 510, 840, and 9000 bpd. For very short mol-
ecules, the peak of the distribution is nearR/L=1 since sig-
nificant bends are rare. For larger molecules, the peak of the
distribution moves to lower values ofR/L; the typical end-
to-end distance for a very long molecule scales asR
~ s2ALd1/2 f39g, so R/L~ s2A/Ld1/2. The shape of the distri-

bution changes from being very asymmetric for nearly
straight moleculessright distributiond to being more symmet-
ric sleft distributiond, as expected for long chainsf39g.

Experiments can be carried out so that the rate of cycliza-
tion of a dsDNA is proportional to the equilibrium probabil-
ity of the end-to-end vector being zerof22,29g. For a free
polymersf =0d the quantity measured experimentally in such
experiments is the “J factor” f24,30g, which is essentially the
end-to-end vector distributions10d for R=0:

J =
4p

NA
rs0d =

2

p

1

NAZ
E

0

`

dk k2Zk, s34d

whereNA is Avogadro’s number. This quantity, expressed in
units of mol/ litre sMd is a measure of the equilibrium con-
centration of one end of the polymer at the other. Our calcu-
lations are for closure of dsDNAs without torsional con-
straintf29,30g. We note that the 4p factor was omitted in Eq.
s4d and Eq.s5d of Ref. f31g salthough not in the numerical
calculationsd.

Figure 4 showsJ factors calculated for the simple semi-
flexible polymer withb=1 anda=50, with no thermally ex-
cited defectsspersistence length 50 nmd. The three curves
showJ versus molecule length, for three different cyclization
boundary conditions: parallelslowest curved, antiparallel
smiddle curved, and freeshighest curved. The free boundary
condition has the highest cyclization rate of the three, since it
has the least severe conformational constraint. The antiparal-
lel shairpin-shapedd closure requires less bending than the
parallelscirculard case, and therefore has the higher probabil-
ity. These three results are in excellent agreement with pre-
vious cyclization calculations for the semiflexible polymer
f24,28–30g. In each of the boundary condition cases of Fig. 4
the J factor has a peak near 500 bp, which is a compromise
between the entropic suppression ofJ for long molecules,
and the energeticsbendingd suppression for short molecules
f29g. For ligation by DNA ligase, the usual way that cycliza-
tion of dsDNA is done, the appropriate boundary condition is
the parallel one.

FIG. 3. Distribution of end-to-end radius for the simple semi-
flexible polymer model of dsDNAsb=1 nm, a=50, no hinge or
kink defectsd, as a function of radius in units of molecule contour
length sR/ l0dd, for the parallel-end boundary condition. Results are
shown for molecular lengths 100srightmost peakd, 170, 280, and
3000sleftmost peakd nm, corresponding to sequence lengths of 300,
510, 840, and 9000 bp.

FIG. 4. J factors versus molecule length, for the simple semi-
flexible polymer with persistence length 50 nm. Results are shown
for three different cyclization boundary conditions: parallelslowest
curved, antiparallelsmiddle curved, and freeshighest curved.
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1. Role of excited hinge defects in cyclization of short dsDNAs

For dsDNA, cyclization experiments have produced re-
sults in good agreement with Fig. 4 for molecule lengths
larger than 200 bp, but shorter molecules were not precisely
studied before the recent work by Cloutier and Widomf27g.
Remarkably, Cloutier and Widom found that for molecules
of length near 100 bp, their measured J factors were in ex-
cess of 104 times larger than those expected from classical
semiflexible polymer theorysi.e., Fig. 4d. Their experimental
data indicate that double-helix looping at the 100 bp and 500
bp scales cannot be described by the simple semiflexible
polymer model with persistence length 50 nm.

In our previous paperf31g we suggested a simple resolu-
tion to the paradox presented by Widom and Cloutier’s data,
based on the thermally-activated “flexible hinge” model de-
scribed above. In short, the idea is that at room temperature,
thermally excited local defects in double helix structure oc-
cur, which will be highly flexible relative to the unperturbed,
base-paired and stacked double helix. These defects are rare
enough to not strongly perturb the large-scale persistence-

length behavior of the double helix, but frequent enough to
facilitate bending of short dsDNAs.

We considered “melting,” or strand-separation, as a model
of such defects since the free energy of strand separation is
reasonably well knownf40g. Using the “standard model” of
DNA melting f40,41g, we estimated that the free energy cost
of formation of a 3 bp region of strand-separated dsDNA
should be between 7 and 16kBT, depending on sequence
f31g. Use of such models in straightforward calculations of
opening fluctuations including cooperativity effects inside a
48.5 kb l-DNA indicates that at zero force and room tem-
perature, about 0.3% of the bases along al-DNA are un-
paired at any given momentf42g. Depending on sequence,
the probability of a 3 bpopening event might be as large as
0.1% per base, corresponding to a spacing of about 1 kb
between thermally activated “hinges.”

Figure 5sad shows J-factors calculated using our “flexible
hinge” theory for a range of defect energiesm, along with the
experimental data of Widom and Cloutierf27g. For this cal-
culation,b=1 nm,a=50, anda8=1. Results are shown for a
range ofm values; we find thatJ factors which are in accord

FIG. 5. Effect of thermally activated flexible hinges on cyclization of short dsDNAs. Hinge flexibility isa8=1 s3 base persistence lengthd;
unperturbed double helix flexibility isa=50 s50 nm persistence lengthd. sad J factor versus molecule length for parallel-end boundary
condition. Resultssfrom bottom to topd for m=` sno hinged, 12, 11, and 10. Open circles show data of Widom and Cloutierf27g. sbd
Influence of closure boundary condition on cyclization in the hinge modelsa=50, a8=1, andm=11d. J-factor versus molecule length is
plotted for parallelssquaresd, antiparallelsstarsd, and freesfilled circlesd closure boundary conditions.scd Number of hinge defects on
molecule in cyclized state, versus molecule length, form=11. For molecules shorter than 300 bp, cyclization becomes affected by molecules
with hinge excitations. Results are shown for the parallel boundary conditionssolid+squaresd, and also for the antiparallelsdashed
+filled circlesd and freesdotted+starsd boundary conditions.sdd Nonlinear bending elasticity versus angle for hinge model, for defect
energiesm=1 ssolidd, 10 sdashedd, and 20sdottedd. The elasticity shows a “crossover” behavior from the small-angle, large-scale persistence
length sa=50d of 50 nm, to a much smaller rigiditysa8=1d, at a critical bend angle controlled bym.
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with the short-molecule data occur form=11kBT. This is
costly enough that for longer molecules.150 bp, the prob-
ability of hinge excitations is low enough that the polymer
reverts to being well-described as a semiflexible chain of
persistence length 50 nmsFig. 2d. For moleculesù200 bp,
the calculatedJ factors closely approach those shown for the
simple semiflexible polymersFig. 4d.

In the short-molecule regime, boundary conditions have a
large effect on theJ factor. Figure 5sbd compares the
parallel-endJ factors calculated for the parametersa=50,
a8=1, andm=11 sthe choice which generates short-segment
J factors consistent with the Widom-Cloutier experimentd
with results for antiparallel and free boundary conditions.
The antiparallel and free boundary conditions allow “hair-
pin” configurations to dominate theJ factor. Our model pre-
dicts that for the antiparallel and free closures, the classical
peak at 500 bp will be washed out by the strongJ-factor
enhancement; the peak J-factor is shifted to below 100 bp.

Figure 5scd shows the average number of hinge defects
occuring in the cyclized configurations of the chain, minus
the average occuring in all configurations, as a function of
molecular length. This isDncyc=−] ln J/]m+knlN, whereknl
is the hinge density for the unconstrained chain defined in
Eq. s33d andN is the number of segments, sinceJ is the ratio
of the partition functions of cyclized and linear molecules.
Under parallel boundary condition, for long chains.200 bp,
Dncyc approaches zero, since cyclization occurs easily with-
out any severe bending of the chain. However, for chains
,150 bp,Dncyc rises from zero, and approaches 2 by about
100 bp. The cyclized configurations dominating for short
chains with parallel boundary condition have two excited
hinges. This cyclized state becomes favorable for short
chains since large-scale bending may be entirely eliminated
by forming a “squashed” configuration with two hinges.

The hinge number for the parallel boundary condition
case may be rationalized by considering the relative energy
costs of forming smoothly bent, one-hinge, and two-hinge
cyclized states. A smoothly bent cyclized chain with parallel
ends has bending energy of at least that of a circle, which is
2p2A/L whereL is the molecule length, andA is the 50 nm
persistence length. Creation of one hinge allows part of the
bending energy to be eliminated; the optimal energy be-
comesm+14A/L sthe numerical factor of 14 can be found in
Ref. f29gd; this drops below that of the circle state forL /A
, s2p2−14d /m. Plugging inA=150 bp andm=11 indicates
that the one-hinge state becomes favorable forL /A,80 bp.
However, the two-hinge state, with excitation energy 2m, has
zerobending energy, and therefore becomes lower in energy
than the zero-hinge state whenL /A,p2/m. Taking A
=150 bp andm=11 shows that the two-hinge state becomes
preferable to the circle whenL,135 bp. This estimate indi-
cates that the double helix is sufficiently stiff that short
chains should cyclize via creation of two hinge regions.

The antiparallel and free boundary conditions have much
largerJ factors than the parallel boundary condition casefsee
Fig. 5sbdg. Figure 5scd shows that this is because the domi-
nant cyclization states for short molecules require only one
hinge excitation. With the antiparallelsor freed boundary
condition, closure can occur with essentially zero bending
energy by making a “hairpin” configuration. This is a critical

prediction of the thermally-excited hinge-defect explanation
of the Widom-Cloutier experiments. Ranjithet al. f46g have
recently emphasized this for the free boundary conditions
case.

Finally we note that the fluctuating-hinge model can be
thought of as a semiflexible polymer, with a nonlinear bend-
ing elasticity sSec. II E 3d. Figure 5sdd shows the effective
bending elasticity of the hinge model given by Eq.s23d, as a
function of s1/2dst̂ − t̂8d2=1−cosu whereu is the angle be-
tween two adjacent tangent vectors. Results are shown for
m=1, 10, and 20. In them=10 case, for very small bends
ssmall 1−cosud, the bending energy increases at a rate de-
termined by the large-scale persistence length of 50 nmsa
=50d. However, at 1−cosu<0.2, there is a crossover in the
bending elasticity to a lower slope corresponding to the 50-
fold higher flexibility of the excited hingesa8=1d. The ex-
perimentally observed cyclization can therefore be thought
of as a consequence of the nonlinear elasticity of the double
helix which makes high-curvature bends occur via “focus-
ing” of bending into a localized defect. The point at which
this effect occurs is determined by the parameterm sFig. 5d.

2. Influence of a single preferred-angle kink on J-factor

Figure 6 shows how the dsDNAJ factor sa=50d is en-
hanced by a single preferred-angle kink located at the mid-
point of a linear dsDNA. The kink is considered to have an
angle ofg=p /2 and to be stiffsa8=50d. J factors are shown
for parallelsfilled circlesd and freesfilled squaresd boundary
conditions, in the absence of any other defectssi.e., no ther-
mally excited hingesd.

The enhancement ofJ factor is similar to that generated
by the fluctuating-hinge modelsFig. 5d. Treatment of more
complex situations involving combinations of thermally ex-

FIG. 6. Enhancement ofJ factor of dsDNAsa=50d by a single
preferred-angle kink located at the midpoint of the molecule. The
kink angle isg=p /2 and is stiffsa8=50d. J factors are shown for
parallelsfilled circlesd and freesfilled squaresd boundary conditions,
in the absence of any other defectssi.e., no thermally excited
hingesd. J factors are further affected by combining the fluctuating
hinges and the permanent kink togetherscross-in-circles for parallel
boundary condition, and cross-in-squares for free boundary condi-
tiond. J factors of defect-free dsDNA are also shown for parallel
sopen circlesd and freesopen squaresd boundary conditions.
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cited and fixed-position defects is straightforward: results for
combining the kink with fluctuating hingessm=11d are
shown herescross-in-circles for parallel boundary condition,
and cross-in-squares for free boundary conditiond. It is inter-
esting to note thatJ factor for a kink plus fluctuating hinges
is less thanJ factor for a kink only.

IV. END-TO-END DISTRIBUTIONS FOR DOUBLE-
STRANDED DNA SEGMENTS UNDER TENSION

We now examine a few consequences of the results of the
previous section, for dsDNA molecules under tension. We
focus first on the end-to-end vector statistics, with some em-
phasis on how the distributions parallel to and perpendicular
to the force direction are related. We then show how loop
formation along a stretched dsDNA is suppressed by applied
force.

A. End-to-end vector distribution

We consider a force applied to a dsDNA in thez direction.
Figure 7sad plots extensionkzl for the conventional semiflex-
ible polymer model of the double helixsno fluctuating
hinges, 50 nm persistence length, open circlesd, and also the
extension for the “fluctuating hinge” model used to fit the
cyclization data of Cloutier and Widomf27g sb=1 nm, a
=50, a8=1, m=11, closed circlesd in the preceeding section.
The force-extension curves are essentially indistinguishable,
i.e., the fluctuating hinges do not generate enough flexibility
to cause an experimentally distinguishable signal in the
force-extension behavior, in agreement with a similar calcu-
lation by Wiggins and co-workersf32g.

Figure 7sbd and 7scd show these two cases, with extension
plotted against 1/Îf, as is often done in order to extract the
persistence length of dsDNA from experimental force-
extension data using the semiflexible polymer modelf43g.
The simple semiflexible polymer and the polymer including
fluctuating hinges generate essentially the same behaviors.
Linear fits of extension to 1/Îf over the 0.3 to 1 pN range
usually used to extract persistence lengths result in 48.9 nm
for the semiflexible polymer without any fluctuating hinges,
and 48.5 nm for the polymer including the hinges. Again,
this shows that effects of the fluctuating hinges that we pro-
pose to be responsible for the cyclization enhancement of
Cloutier and Widom cannot be easily observed in force-
extension data, consistent with Ref.f32g.

The fluctuation of the end-to-end vector around its aver-
age extension is routinely measured in single-molecule ma-
nipulation of DNA experiments. We show distributions cal-
culated for the semiflexible polymer model, along the force
directionflongitudinal, Fig. 8sadg, and transverse to the force
directionftransverse, Fig. 8sadg, for the semiflexible polymer
of total length 10 micronss30 kbd and persistence length 50
nm sa=50, b=1 nm, no hinge fluctuationsd, at a force of 0.1
pN. At this force the polymer is extended to about 53% of its
maximum length, as reflected by the peak near 5.3 microns.
The longitudinal distribution is asymmetric around its peak,
reflecting the symmetry-breaking effect of the applied force.

By contrast, the transverse distribution is symmetric, and
nearly a pure Gaussian.

The moments of the two distributions shown in Figs. 8sad
and 8sbd are relatedssee Appendixd. Figure 8scd shows a
check of one of these relations, between the first moment of
the longitudinal distributionsthe average extensiond and the
second moment of the transverse distribution. The ratio of
these two quantities is expected to be equal to the force di-

FIG. 7. Effect of thermally activated flexible hinges form=11
on force-extension curve is negligible.sad Force-extension curves
for defect-free dsDNAsopen circlesd and for dsDNA with hinge
fluctuationsfilled circlesd; the two results coincide.sbd andscd Per-
sistence lengths for unperturbed dsDNA and dsDNA with hinge
fluctuation are extracted from the force-extension curve at high
force: 48.9 nm for unperturbed dsDNA, and 48.5 nm for dsDNA
with hinge fluctuation.

STATISTICS OF LOOP FORMATION ALONG DOUBLE… PHYSICAL REVIEW E 71, 061905s2005d

061905-13



vided by kBT, independent of any details of the polymer
model; this relation is used tomeasureforces in single-
molecule manipulation of DNA experiments using magnetic
tweezer. Figure 8scd shows the moment ratio derived from
distributions at a series of forcesffilled squares, Fig. 8scdg;
this matches the expected ratiofstraight line, Fig. 8scdg.

Figure 9 shows the form of the general distribution
rsx,zd, wherez is the coordinate of the force direction, andx
is the coordinate of a direction transverse to the force direc-

tion, for a 334 nms1000 bpd dsDNA at a force of 0.04 pN.
The results shown are for the semiflexible polymer with 50
nm persistence length without fluctuating hinge defectssa
=50,b=1 nmd. This general distribution has symmetry under
reflection ofx→−x, but no such symmetry in thez direction.
For this short molecule and low force, the widths of the
distribution are comparable to the average extension.

B. Force-dependent loop formation probability

The end-to-end distributions of the previous section can
be evaluated at zero distance, to predict loop-formation prob-
abilities analogous to those discussed in Sec. III, but at non-
zero force. One expects a forcef which appreciably extends
a polymer to strongly quench formation of loops along its
length, since a fluctuation which does mechanical work<f,
must occur to spontaneously cyclize a segment of length,
under tension which stretches a chainf44g. This implies that
loop formation probability should be suppressed asJsfd
~e−bf,. For forces less than<kBT/A<0.1 pN, a short
dsDNA segment will be only weakly extended, allowing

FIG. 8. End-to-end distributions of a 10mm s30 kbd dsDNA, in
longitudinal sforced and transverse directions.sad Open circles are
the longitudinal distribution,rszd, at f =0.1 pN. Solid line is a
Gaussian distribution with its peak matched to that ofrszd. sbd
Open circles are transverse distribution,rsxd, at f =0.1 pN. It can be
fit closely by a Gaussian distributionssolid lined. scd The variance
of the transverse fluctuation is equal to the end-to-end distance di-
vided by force inkBT units sskBTkzl / fd, for all forces.

FIG. 9. The general end-to-end distance distribution of a 334 nm
s1000 bpd dsDNA at a forcef =0.04 pN. Herez is the coordinate of
the force direction, andx is the coordinates of a direction transverse
to the force direction. The probability density is in units of nm−3.

FIG. 10. Effect of force onJ factors of dsDNA with different
lengths. Results are shown for a 2 kb unperturbed dsDNAsfilled
squaresd, an 1 kb unperturbed dsDNAsstarsd, 0.5 kb without fluc-
tuating hinge defectssfilled circlesd, and 0.5 kb with fluctuating
hinge defectssm=11, a8=1, open circlesd.
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loop formation to occur against the applied tension via ther-
mal fluctuation.

Our approach can be used to directly calculate tension
effects of loop formation probability, which is dependent on
both tension and loop length. Figure 10 shows theJ factor
sdefined in the same way as in Sec. III, only for a stretched
chaind as a function of force, for dsDNA segments of 500 bp
scirclesd, 1000 bp sstarsd and 2000 bpssquaresd long. A
“free” boundary condition was used in these calculations.
For forces in excess of 0.1 pN, we observe the expected
linear dependence of lnJ on force. At 0.1 pN there is still
appreciable suppression ofJ by force for the 2 kb loopsJ is
reduced by more than tenfold by a force of 0.1 pNd, but
relatively little for the 500 bp loop. Our results are in good
agreement with recent analytical calculations by Sankarara-
manet al. f45g.

Fluctuating-hinge excitations along the double helix
might be expected to facilitate looping under tension. How-
ever, for the casesm=11, a8=1d discussed above, the effect
is negligible for the 1 kb and 2 kb loops of Fig. 10, so we do
not include them in the figure. The open circles in Fig. 10
show the fluctuating-hinge resultsm=11, a8=1d relative to
the usual semiflexible polymer modelsfilled circlesd for the
500 bp case. The effect of the fluctuating hinges for the 500
bp case amounts to a small increase inJ, by about 10%,
similar to the zero-force enhancement. For shorter loops, the
fluctuating hinge effect will lead to a stronger enhancement
of Jsfd.

V. CONCLUSION

We have generalized our previous work on use of transfer
matrix calculations for semiflexible polymersf33g, to com-
pute statistical distributions of the vector between two points
along a dsDNA. We have computed the transfer matrix ele-
ments analytically for a wide variety of polymer models
which are variants on the usual semiflexible polymer model.
We have paid particular attention to the semiflexible polymer
including localized “flexible hinge” and “spontaneously
bent” excitations. The former provides a model for thermal
fluctuations of double helix structure which provide en-
hanced flexibility, while the latter provides a model for
DNA-bending proteins binding and unbinding in thermal
equilibrium.

Our calculations have emphasized calculation of the end-
to-end distributions for finite-length dsDNAs. For molecules
under zero force, the probability of zero length of the end-
to-end vector gives the “J factor” commonly studied in cy-
clization experiments. Cloutier and Widomf27g experimen-
tally found aJ factor for<100 bp molecules in excess of 104

times larger than that expected from the semiflexible poly-
mer model. This suggests that effects beyond that model fa-
cilitate cyclization of short molecules. We have proposed
f31g that thermally activated localized flexible “hinges,” gen-
erated by helix opening, may provide an explanation for
those experiments. We find that including 11kBT excitations
sdepending on DNA sequence, 11kBT can generate a flexible
hinge of size from 2 bp to 8 bp longd, locally reducing the
double helix persistence length to 3 bp, provide a way to

generate the largeJ factors observed experimentally, while
retaining the well-established simple semiflexible polymer
behavior at larger scales. We have shown that our model
producesJ factors which converge to the predictions of the
semiflexible polymer model beyond 200 bp, and also provide
the dsDNA entropic elasticity observed in single-molecule
experiments.

We previously noted that theJ factor for short molecules
was extremely sensitive to small changes in the hinge defect
excitation energy, with a 1kBT change inm resulting in a
roughly ninefold change inJ for 135 bpf31g. Recently, Ran-
jith and colleaguesf46g have introduced sequence disorder
into our model, and have found strong dependence ofJ fac-
tor on sequence reminiscent of the experimental results.
However, it remains to be seen if a sequence-dependent
theory can explain the sequence-dependence observed by
Widom and Cloutierf27g.

In this paper we have also considered the effect of the
boundary conditions for cyclization on theJ factor. We have
found an extremely strong dependence for short chains, de-
pending on whether cyclization is forced to occur with ends
“parallel” sas is thought to be the case for cyclization using
DNA ligased, or ends “antiparallel.”

The antiparallel closure could apply for a protein which
binds two sequences so as to form a “hairpin” out of the
double helix, e.g., Gal repressorf10g. The latter, antiparallel,
boundary condition hugely enhances cyclization of short
chains, since it reduces the number of hinge defects neces-
sary to close the chain without bending energy from two, to
only one. In calculations of the number of excited hinge
defects we have shown that our model for parallel end clo-
sure indeed predicts that two hinges occur for,150 bp mol-
ecules, while for antiparallel closure, only one hinge is gen-
erated for short molecules. Results similar to the antiparallel
case occur when a “free” closure boundary condition is used,
in accord with Ranjithet al. f46g who further showed that in
this case the single defect appears near the midpoint of the
modecule; such a boundary condition might be realizable
experimentally in a cyclization experiment that uses flexible,
reactive end labels on dsDNA segments.

To account for DNA looping facilitated by DNA bending
protein that binds to specific DNA sequences, we have cal-
culatedJ factors for short dsDNA segments with a single
bend located at the middle of the molecule. The effect of
combination of a single bend, thermally excited flexible
hinges, and end orientation boundary conditions onJ factor
were also computed.

The calculations of the present paper do not account for
the torsional rigidity of dsDNA, which for shorts,200 bpd
segments introduces appreciable helix “phasing” effects in
cyclization using DNA ligase. The twist rigidity of the
double helix is sufficiently large that oscillations ofJ with
segment length, with a period of about 10 bases, occurf29g.
Our calculations are effectively for dsDNA with no twist
rigidity, where we require only a tangent vector alignment
boundary condition for cyclization; we giveJ factors inter-
mediate between the “in phase” and “out of phase” limits
f29,30g. Including the torsional rigidity and linking number
constraint necessary to close a dsDNA is possible; however,
for dsDNA segments shorter than 200 bp, it is plausible that
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the same defects which facilitate dsDNA bending will facili-
tate dsDNA twisting, reducing the effect of the linking num-
ber constraint onJ. Therefore a complete theory will require
not just linking number constraint but also possible softening
of the twist rigidity due to the hinge defects.

We have also carried out calculations for howJ factor is
suppressed by applied force. For loop sizes in the 500 bp to
2 kb range there is an enormous suppression by even small
forcess0.2 pNd. A wide variety of experimental possibilities
exist for studying force dependence of looping, including
loop-forming transcription factorsf17,18g and loop-forming
restriction enzymesf19g. Although some experiments of this
type f18g have been done, the strong loop-length, force and
boundary-condition dependences of the cyclization probabil-
ity remain to be explored.

Finally, we want to draw reader’s attention to other re-
cently reported methods to calculate the end-to-end distance
distribution of a chain molecule: using infinite continued
fractions, Ref.f48g provides methods for exact calculation of
the partition function of the stretched semiflexible polymer.
Those results can be used to calculate zero-force end-to-end
distance distributions of the molecule with “free”suncon-
strainedd boundary conditionf32g. Another related recent pa-
per f49g calculates the polymer end-to-end distribution in the
force direction, based on the knowledge of the force-
extension curve which can be experimentally obtained. The
distribution function calculated from the force-extension
curve might be used to analyze the underlying elasticity of
the polymer.
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APPENDIX: END-TO-END VECTOR MOMENT
RELATIONS FOR STRETCHED POLYMERS

A simple relation between moments of the end-to-end
vector of a stretched polymer and the magnitude of the ex-
ternal force holds when the energy function of the polymer is
of the form

E = Epolymer− f ·R, sA1d

wheref is the applied force,R is the end-to-end vector of the
polymer, andEpolymer is the energy associated with the poly-
mer itself, i.e., elastic energy, self-interactions, or interac-
tions with other molecules free in solution.

The cumulants of end-to-end vector components are gen-
erated using derivatives on force components, e.g.,

kRil = kBT
] ln Z

] f i
,

kRi
2l − kRil2 = skBTd2] ln Z

]sf id2 . sA2d

In the context of this paper, these are cumulant moments of
the direction-projected distribution functionss13d.

We will assume thatEpolymer is invariant under space ro-
tation, which is true for a broad class of polymer models,
including those describing dsDNA under torsional stress
f43g, and with either continuum or discretized degrees of
freedomf33g. In this case, the partition function must be a
function only of the magnitude of the force, since this is the
only preferred direction in the problem, i.e.,Z=Zsfd. For the
case where the applied force is near to thez direction, i.e.,
uf'u! fz where f';sfx, fyd, writing the expansionf =ffz

2

+ f'
2 g1/2= fz+ f'

2 / s2fzd+Osf'
4 d allows us to expand lnZsfd in

force components:

ln Zsfd = ln Zsfzd +
f'
2

2fz

d ln Zsfzd
dfz

+ Osf'
4 d. sA3d

Using sA2d, the first moment of the end-to-end vector in the
force direction, i.e., the extension, is

kRzl = kBTU ] ln Zsfzd
] fz

U
f'=0,fz=f

= kBT
d ln Zsfd

df
. sA4d

The second moment of the end-to-end vector in any direction
transverse to the applied force is

kRx
2l = skBTd2U ]2ln Z

] fx
2 U

f'=0,fz=f

=
skBTd2

f

d ln Zsfd
df

.

sA5d

Therefore, for a polymer stretched by a forcef in the z di-
rection, we have

f = kBT
kRzl
kRx

2l
. sA6d

This is easily generalized to show that the 2nth cumulant
of the transverse distribution is determined by the cumulants
of the longitudinal distribution:

kRx
2nlc = o

,=1

n
skBT/fd2n−,

,!
Sd2nÎ1 + x2 − 1

dx2n D
x=1

kRz
,lc.

sA7d

Accordingly the longitudinal and transverse distributions,
rszd andrsxd, are linearly related:

rszd =E
−`

`

dx rsxdE
−`

` dk

2p
e−ikzeixÎk2−2ikf/skBTd. sA8d

These exact relations hold for finite-length or self-interacting
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polymers where the end-to-end distributions may be far from
Gaussian, and for situations such as low forces where the
transverse fluctuations are large compared to the extension.
An experimental situation where these relations need not

hold is for dsDNAs tethered to a surface, with sufficiently
low forces applied so that the surface substantially affects the
polymer fluctuations, thus breaking the rotational invariance
of Z.
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